- Long Exposure:
ccelerating Parameter-Efficient Fine-Tuning
for LLMs under Shadowy Sparsity

Tuowei Wang®*, Kun Li*, Zixu Hao, Donglin Bai,
Ju Ren, Yaoxue Zhang, Ting Cao, Mao Yang

Tsinghua University Microsoft Research

* Contributed Equally

) SLC24

hpc
cred

Atlanta,
GA

Background: Fine-tuning is essential for LLMs

3-step LLM Paradigm:

Background: Fine-tuning is essential for LLMs

3-step LLM Paradigm:

Pre-training

B~

Base Model

Large Data

Background: Fine-tuning is essential for LLMs

3-step LLM Paradigm:

Pre-training

B~

Base Model /

Large Data

\ Fine-tuning

-~

Model

Small Data

Background: Fine-tuning is essential for LLMs

3-step LLM Paradigm:

Pre-training

P~

Base Model /

Large Data

\ Fine-tuning

Inference

Content Generation

-~

Code Development

Fine-tuned

Virtual Assistants

Model

Search & Recommendation

Small Data

Background: Fine-tuning is essential for LLMs

3-step LLM Paradigm:

Pre-training

B-©
Base Model /

Large Data

Inference

\ Fine-tuning

Content Generation

-~

Code Development

Fine-tuned

Virtual Assistants

Model

Search & Recommendation

Small Data

Boost LLM performance to specific tasks.

Background: Fine-tuning efficiency is essential for LLMs

Background: Fine-tuning efficiency is essential for LLMs

LLMs has experienced a trend of explosive increase in size.
e BERT 0.34B, GPT-2 1.5B, Claude2 130B, GPT-3 175B.

.

Background: Fine-tuning efficiency is essential for LLMs

LLMs has experienced a trend of explosive increase in size.
e BERT 0.34B, GPT-2 1.5B, Claude2 130B, GPT-3 175B.

.

Pre-trained LLMs are periodic updated, typically every few months.

* Each update triggers hundreds of fine-tuning processes.

Background: Parameter-efficient Fine-tuning Techniques

10

Background: Parameter-efficient Fine-tuning Techniques

Full Fine-tuning involves updating all model parameters, which is costly.

—r

r—/u
TJ

0
Full Fine-tuning

Background: Parameter-efficient Fine-tuning Techniques

Full Fine-tuning involves updating all model parameters, which is costly.
Parameter-efficient Fine-tuning (PEFT):

Selects or injects a minimal number of parameters for adaption.

—r

r—/u
T

0
Full Fine-tuning

Background: Parameter-efficient Fine-tuning Techniques

Full Fine-tuning involves updating all model parameters, which is costly.
Parameter-efficient Fine-tuning (PEFT):
Selects or injects a minimal number of parameters for adaption.

S/ S S —t
e T ——
— 1 —
—F))

Full Fine-tuning Outer layers Bias terms

Frozen parameters Trainable parameters

Background: Parameter-efficient Fine-tuning Techniques

Full Fine-tuning involves updating all model parameters, which is costly.
Parameter-efficient Fine-tuning (PEFT):

Selects or injects a minimal number of parameters for adaption.

| —
S, S— I R S— P N e— I<> S S
|
R — I S SR S— A) _Ag — 3
|
Full Fine-tuning Outer layers Bias terms Adapters Prefix Reparameterization

Frozen parameters Trainable parameters

14

Background: Parameter-efficient Fine-tuning Techniques

Full Fine-tuning involves updating all model parameters, which is costly.
Parameter-efficient Fine-tuning (PEFT):
Selects or injects a minimal number of parameters for adaption.

Frozen parameters

A : r S B\ =y ' AO —t
| <&
D I A —J& A < --:- () /T\O A
|
) |) T R I -
Full Fine-tuning Outer layers Bias terms Adapters Prefix Reparameterization

Trainable parameters

Less than 1% model parameters are trainable.

15

Observation: Parameter-saving isn’t proportionally time-saving

PEFT techniques fall short of achieving an expected decrease in wall-clock time.

16

Observation: Parameter-saving isn’t proportionally time-saving

PEFT techniques fall short of achieving an expected decrease in wall-clock time.

OPT-1.3B fine-tuning time breakdown. (ms/batch)

Phase Forward Backward Optim. Step| Total
Full Param. 112.8(27.7%) 223.7(54.9%) 70.6(17.3%)| 407.2
LoRA 135.3(40.4%) 196.3(58.7%) 2.0(0.6%) 334.6
Adapter 123.6(42.2%) 168.4(57.5%) 0.7(0.3%) 292.9
Bitfit 117.6(40.5%) 172.4(59.4%) 0.2(0.07%) 290.3
P-Tuning 137.5(40.1%) 193.9(56.6%) 11.1(3.2%) 342.6

More than 70% wall-clock time is remained.

17

Insight #1: Forward and backward are the performance bottlenecks

18

Insight #1: Forward and backward are the performance bottlenecks

Fine-tuning, as well as training, consists of 3 phrases:

* Forward: calculates the loss.

1. Forward

Observation Q

19

Insight #1: Forward and backward are the performance bottlenecks

Fine-tuning, as well as training, consists of 3 phrases:
* Forward: calculates the loss.
* Backward: calculates the gradient.

1. Forward ., Guess Actual
Observation Q v.. Loss Function
™ Loss

2. Backward

20

Insight #1: Forward and backward are the performance bottlenecks

Fine-tuning, as well as training, consists of 3 phrases:
* Forward: calculates the loss.

* Backward: calculates the gradient.

* Optimizer step: updates the trainable parameters.

1. Forward -

Observation Q v.. Loss Function

3. Optimizer Step

2. Backward

Optimizer

21

Insight #1: Forward and backward are the performance bottlenecks

Applying LoRA to fine-tune an MLP block

a; T
Activation g;
Zi = Wix + BiAl-x T

Wix + B;A;x
\\ LoRAB; /
Pretrained
Weights Aix T
W;
/ LoRAA; \

|

22

Insight #1: Forward and backward are the performance bottlenecks

Forward Applying LoRA to fine-tune an MLP block
 Vanilla: z = g;(W;x)
e LORA: 7z = a;(Wix + B,;A;x) a |

Activation g;
Zi = Wix + BiAl-x T

Wix + B;A;x
\\ LoRAB; /
Pretrained
Weights Aix T
4
/ LoRAA; \

x|

23

Insight #1: Forward and backward are the performance bottlenecks

Forward

e Vanilla: z; = o;(W;x)

* LoRA: z; =o0;(Wix + B;A;x)
Backward

e Vanilla: 9L _ 9L 0a; 0z

aVVl - aai OZ,; 6WL
e LORA: OL 0L da; 0z 0B;A;

94, Oa, 0z, 0B, A; 04,
0L oL aai aZl' 6BiAl-

0Bl- - aai aZl' 6BiAi aBl

Applying LoRA to fine-tune an MLP block

a; T
Activation g;

Zi = Wix + BiAl-x T

Wix + B;A;x
\\ LoRAB; /
Pretrained
Weights Aix T
W;
/ LoRAA; \

y

' dL/0a; Shared

~
\

I

I

I

I

I

i aai/azi

' 82,/0W; ~ 02,/0B A,

T

| 0B;A;/9B; Extra

. OB;A;/0A;

Chain Rule Backpropagation

24

Insight: Forward and backward are the performance bottlenecks

Forward Applying LoRA to fine-tune an MLP block
e Vanilla: zz=os(Wx \
e LORA: z; = 0;(W;x + B;A; %) a; T dL/da; Shared
Backward Activation g; |
e Vanilla: 9L _ 0L da; 0z 7= W Bidix T Eaai/aZi :
OW; da; dz; W, Wix + Bilix
e LoRA: dL . dL da; 0z; 0B;A; Pretrained \—’LORABi EraBiAi/aBi Extra
9A;, _ 0a; 0z, 0B, A; 04, Weighs Ax]
0L 0L da; 0z; 0B;A, L) [eRA4; \ | (0BAJOA
0B, N da; 0z; 0B;A; 0B; X T | Chain Rule Backpropagation

Optimizer step
* Reduced due to fewer trainable parameters.
e Savings vary with the choice of optimizer.

25

Insight: Forward and backward are the performance bottlenecks

Forward

 Vanilla: z = g;(W;x)

e LoRA: z, =0 (W;x+ B;A;x)
Backward

e Vanilla: oL dL da; 0z;

0Vl/l - 6ai aZl' 6WL
e LoRA: OL

OPT-1.3B fine-tuning time breakdown. (ms/batch)

Phase Forward Backward Optim. Step Total
Full Param. 112.8(27.7%) 223.7(54.9%)| 70.6(17.3%) 407.2
LoRA 135.3(40.4%) 196.3(58.7%)| 2.0(0.6%) 334.6
Adapter 123.6(42.2%) 168.4(57.5%)| 0.7(0.3%) 292.9
Bitfit 117.6(40.5%) 172.4(59.4%)| 0.2(0.07%) 290.3
P-Tuning 137.5(40.1%) 193.9(56.6%)| 11.1(3.2%) 342.6

dL aal’ aZl' aBiAi

94, Oa, 0z, 0B, A; 04,

dL dL aai OZ,; 6BiA,;

Forward and Backward are the bottlenecks.

5Bl- - aai aZl' 6BiAi aBl
Optimizer step

* Reduced due to fewer trainable parameters.

e Savings vary with the choice of optimizer.

26

Insight: PEFT and inference share high similarity

In both PEFT and inference, most model parameters remain frozen.

27

Insight: PEFT and inference share high similarity

In both PEFT and inference, most model parameters remain frozen.

Sparsity has been widely used for model inference acceleration.

28

Insight: PEFT and inference share high similarity

In both PEFT and inference, most model parameters remain frozen.

Sparsity has been widely used for model inference acceleration.

LLMA p=-=-=--- > LLMB

Output Y

Static Sparsity

Insight: PEFT and inference share high similarity

In both PEFT and inference, most model parameters remain frozen.

Sparsity has been widely used for model inference acceleration.

LLM A

Output Y

Static Sparsity

[@ Costly Retraining.]

30

Insight: PEFT and inference share high similarity

In both PEFT and inference, most model parameters remain frozen.

Sparsity has been widely used for model inference acceleration.

LLM A

Output Y

Static Sparsity

[@ Costly Retraining.]

[@ Generalization Loss. J

31

Insight: PEFT and inference share high similarity

In both PEFT and inference, most model parameters remain frozen.

Sparsity has been widely used for model inference acceleration.

LLM A

Output Y

Static Sparsity

—

s Input X
predict |
: \
LLMA --%-----> LLMB
selectively
activate J
Output Y

Activation Sparsity

32

Insight: PEFT and inference share high similarity

Why not build a bridge between PEFT and inference by capturing LLM sparsity?
* Backbone models are frozen.
e Activation sparsity also exists.

* Fine-tuning can be even more robust.

33

Insight: PEFT and inference share high similarity

Why not build a bridge between PEFT and inference by capturing LLM sparsity?
* Backbone models are frozen.

e Activation sparsity also exists.

* Fine-tuning can be even more robust.

Sparsity

Computation-Efficient
Inference

Parameter-Efficient
Fine-tuning

‘

Computation-Efficient and Parameter-Efficient Fine-tuning.

Challenge: Sparsity is superimposed of token batches during fine-tuning

In inference, the model input is a single token.

In fine-tuning, the model input is a sequence of tokens.

Tokens

Activations

Heads

I
(a) Multi-head Attention Inference (¢) MLP Block Inference
Seq 0 Seql Seq 2 Activations

The overall sparsity pattern is the
overlapped sparsity of different
tokens — Shadowy Sparsity.

Head O :7

Head 1 | -

Head 2 Tokens

= oOverall NN EEENNIIER

(b) Multi-head Attention Fine-tuning (d) MLP Block Fine-tuning

35

Challenge: Sparsity is superimposed of token batches during fine-tuning

In inference, the model input is a single token.

In fine-tuning, the model input is a sequence of tokens.

/

1. How can we capture sparse patterns effectively?
2. How can we predict sparse patterns seamlessly?

3. How can we perform on sparse patterns efficiently?
-

36

Challenge #1: How can we capture sparse patterns effectively?

The dense units for one token coincide with the sparse units for another.

Although each token may exhibit high sparsity, the overall sparsity is limited.

Multi-head Attention MLP Block
tokens sparsity scores tokens weights outputs
patterns
token 1|\ /] — Hatte % 1 = [ololo) %
oo token 1 output 1
headl scorel :
token 2 ololo % \%
— = N [x =
plolo % token 2 output 2 %
head2 score2
token 3 5o
- S e s
0]0 token 3 output 3
token4 head3 score3 .
Shadowy Sparsity ! Shadowy Sparsity !
u 0 g g head 1 @
/ 0[0
o]oJo BTG
B a2) _ Eop Computation
ofofo olo
tokens sparse 0lo tokens weights outputs Wa Ste
pattern 1% head 3
o[o
scores [activated [] inactivated [non-zero [] wasted 37

Challenge #2: How can we predict sparse patterns seamlessly?

Obtain gain from activation sparsity requires prediction.
Neural-networks-based prediction has shown promise in LLM inference.

This prediction could become costly in fine-tuning due to large input size.

Input | =) -

Predictor

Challenge #3: How can we perform on sparsity patterns efficiently?

Sparse operations are challenging due to scattered memory accesses.

Besides, the computation patterns vary with different inputs at runtime.

Existing tools are limited by static sparsity or introduce conversion overhead.

N (Swep2

Input X | == InputY | ==

39

Overview: Long Exposure

__________________________ Exposer(§IV) _______ Predictor(Sv) ____Operator(8Vl)

i 1 - CTTTCT] [JLTTT] oTolo i

i SLED L el R o[o[[0] outputs !

i Activation o[o i

| 21 Sparse Matmul| | : '

Jp— Eﬂl 21Tl = Feewwes | | |2 Shadowy-sparsity Exposer
1 io>8 eights E

iny | Ret) > eawens L 1« capture sparse patterns
i 2[1]1]0 i

i = T % 2[11]0 token 1 toktlen 2 token3 T E

! % 2 i i 8 2 o% 0 Sparse Matmul i

! FC1 . 2/0[0[0 --» . i

E Approximate AGGR (column-wise) !

i % Activation tokes gegu%n e FC 1 Weights T x E

-- -"--"1‘ ------------------ 1 °p redict s parse patterns

i g Output Sparse Matmul olo] !

i'-g Projection (D=5xD) glJ0 i .

E 1 radt L |||: Dynamic-aware Operator
i'-c Attention Score| -1-=> o7om0 i .

g J f e i exploit sparse patterns
i"t | Attention Sparse Matmul head 2 |

£ Head 1 (S=DxD) o |

S ok v o6 |

i head 3 headl head2 head3 peade E

40

Component #1: Shadow-sparsity Exposer

Core idea: Explore the intricate details of individual sparse patterns.

41

Component #1: Shadow-sparsity Exposer

Core idea: Explore the intricate details of individual sparse patterns.
MHA: Head-specific sparse mask

 Emphasize the strong interactions among different tokens.

e Consider the unique data distribution of each head.

Multi-head Attention
tokens sparsity scores 5
R patterns Sparse Pattern
token 1 — Mol 0 % %
0]0
headl scorel l head 1
token S = =~
— [lololo head 2
cen 3 head2 score?2 %
token
o]0 head 3
(A —piE S
0
bl — oo
token 4 head3 score3
Shadowy Sparsity !

Component #1: Shadow-sparsity Exposer

Core idea: Explore the intricate details of individual sparse patterns.
MLP: Threshold-based filter
 Emphasize both the activated counts and activated values of each neurons.

 Employ a block-wise manner to align with the hardware characteristics.

MLP Block
tokens weights outputs 5
Exact
T x = [ololo] Activation
token 1 output 1 % @ 2110
l 2
% :> |:> l/ratio >0
i 0 = [O[oLIo S 7 g
token 2 output 2 % @ HEn
@ Approximate
Activation
O x = %
token 3 output 3
Shadowy Sparsity !

Component #2: Sequence-oriented Predictor

attention mask

dXr \fsxr E::“"
sxd E '.. v
L] L]
S| down E Vsxys sxys =
wen | sample oool 6 [¢o@] match |“22.
—) D s L bbb > eee
— 3 .- L] e e a::
— i} Sattn Mgeen =
X ¢ H
H
. - []
(a) Multi-head Attention (per head) .
sxd sxn_blk sxn_blk activated neurons
dxn_blk
] I (N 1xn_blk e
2] reduce []
L] L] —iil—1 - —
[]
[]] aede E—
X S- mip ﬁ mlp “’fc1 Wf 2
(b) MLP Block

4

~

Component #2: Sequence-oriented Predictor

Core idea I: Effectiveness

* Prioritize recall over precision.

* Add noise for avoiding overfitting.

attention mask

dxXr +fsxr

sxd Vsxd v
down (—— WQ E VsxXs - fsxis
sample [match
3 ¢ —o® |------- >

WK S_atm ﬁatm

X X

(a) Multi-head Attention (per head)

sxd sxn_blk sxn_blk activated neurons
dxn_blk
1xn_blk
’ 0 reduce
—> — m————3

(1,0,1,1,0)

X §mtp ’W mlp VVfrl chz
(b) MLP Block

45

Component #2: Sequence-oriented Predictor

attention mask

sxd Vsxd o v v
Core idea I: Effectiveness doun ‘E"ﬁﬁ"ﬁ ot
* Prioritize recall over precision. : —| \m Sun
* Add noise for avoiding overfitting. (8) Multi-head Attention (per head)

sxd e bik sxn_blk sxn_blk activated neurons

1xn_blk

Core idea ll: Efficiency 1010

X Smip - Wrar Weea
 Make predictions at the token level and then (b) MLP Block

reduce the results.

* Simplify the objective: from values to pattern.

46

Component #2: Sequence-oriented Predictor

attention mask

sxd Vsxd o v v
Core idea I: Effectiveness doun ‘E"ﬁ .
* Prioritize recall over precision. : —| \m Sun
* Add noise for avoiding overfitting. (8) Multi-head Attention (per head)
sxd e bik sxn_blk sxn_blk activated neurons
1xn_blk
Core idea ll: Efficiency 1010
X Smip - Wrar Weea
 Make predictions at the token level and then (b) MLP Block
reduce the results. Savings: 0(s2) to O(s)

* Simplify the objective: from values to pattern. Overhead: Costasn = Costo + Costi + Costox

= /sdr + \/sdr + sr

Savings: depends on sparsity ratio, around 0.8-0.9

Overhead: Cost,,, = Costg + Costanp = sdr + s

47

Component #3: Dynamic-aware Operator

Core idea: Simple and efficient; focused on the task at hand.

48

Component #3: Dynamic-aware Operator

Core idea: Simple and efficient; focused on the task at hand.

MHA: Two-stage algorithm Offline Construction

data |index | | data | index | | data | index

Offline Pool Construction

. pre-

compute 19 19

* Construct an atomic sparse pattern pool. Layouts

Lookup Tables

* Pre-calculate their layout lookup tables.

49

Component #3: Dynamic-aware Operator

Core idea: Simple and efficient; focused on the task at hand.

MHA: Two-stage algorithm

Offline Pool Construction

* Construct an atomic sparse pattern pool.

* Pre-calculate their layout lookup tables.
Online Pattern Combination

 Combine atomic sparse patterns at runtime.

* Flexible yet incurs minimal overhead.

Offline Construction

data

index

data [index

data | index

0

0

. pre-

compute 19 19 7
Layouts Lookup Tables
Online Combination
data |index | data | index | data | index
0 20 28
— —_—
19 27 47
head 0 head 1 head 2 Lookup Tables
data |index | data | index | data |index
0 20 40
—_— —_
19 39 47
head0 headl head 2) Lookup Tables
\

Predicted Sparse Patterns

Y
Offsets Shift

o0

Component #3: Dynamic-aware Operator

Core idea: Simple and efficient; focused on the task at hand.

MLP: Neuron (i.e., a column or row in the weight matrix) is the basic unit.

ol

Component #3: Dynamic-aware Operator

Core idea: Simple and efficient; focused on the task at hand.

MLP: Neuron (i.e., a column or row in the weight matrix) is the basic unit.
Tiling Technique

* The block manner aligns with the tiling technique in GEMM.

* Only the activated blocks are loaded and processed.

52

Component #3: Dynamic-aware Operator

Core idea: Simple and efficient; focused on the task at hand.

MLP: Neuron (i.e., a column or row in the weight matrix) is the basic unit.
Tiling Technique

* The block manner aligns with the tiling technique in GEMM.

* Only the activated blocks are loaded and processed.

Memory Coalescing

» Store the weights based on their access patterns.

* Column-major for the up projection and row-major for the down projection.

o3

End-to-end Fine-tuning Performance (Nvidia A100 and A6000)

Bl Full Parameter

3 LoRA 0 Adapter [BitFit

EZZ Long Exposure + LoRA EZZA Long Exposure + Adapter Long Exposure + BitFit
600 A100 OPT-1.3B | OPT-27B 232x[f] %85 2.30x
b 2.46X2 77x2.97x !
5 400 : 1.16x
€ 500 mml:23%1.20x1.33x : oixleax =
= : o

0- ! © Z

512 1024 512 1024 Seq_Len
7 500{ A6000 OPT-350M g 288x342x382x i @, OPT-1.3B
£ X9 29x2.49x
g 250 1.28x1.28x1.46x ssWsms
= oopg o o@
o0 O O

o
1

512

1024

512

1024 Seq_len

Long Exposure outperforms existing methods by on average
1.20-2.69x across various sequence lengths and model sizes.

o4

End-to-end Fine-tuning Memory Footprint (Nvidia A100)

B Full Parameter @@ LoRA [Long Exposure [] Long Exposure(optimal)
50 1

OPT-350M OPT-1.3B

. 40 1 -

) 2 77x m 407

S i reduction e 1.69x

301 -

& 2 30 - reduction

Q O

5 3 ir

s 201 s 20-

- -

o [a

O 10 - O 10 -
ss ss
506 556

0. s} st}

0_
128 256 512 1024 2048 Seg_Len 128 256 512 1024 2048

Long Exposure alters the memory complexity from O(s?%) to O(s), achieving
1.69x-2.77x memory reduction compared to PyTorch Implementation.

SB)

Model Accuracy on Downstream Tasks

350M-w/o 350M-w 1.3B-w/o 1.3B-w 2.7B-w/o 2.7B-w

PIQA Acc. 65.13% 64.80% 72.25% 72.09% 74.70% 73.45%
Stderr 1.11% 1.12% 1.05% 1.06% 1.02% 1.02%

Winog Acc. 53.04% 53.12% 58.88% 58.80% 62.27% 62.19%
" Stderr 1.40% 1.40% 1.38% 1.38% 1.37% 1.36%

RTE Acc. 54.51% 55.60% 54.15% 54.51% 52.71% 53.79%
Stderr 299% 3.01% 3.01% 3.01% 3.00% 2.04%

COPA Acc. 69.00% 70.00% 81.00% 81.00% 78.00% 76.00%
Stderr 461% 451% 423% 4.02% 4.29% 4.09%

Hella Acc. 32.26% 32.40% 42.08% 42.11% 46.76% 43.95%
" Stderr 047% 047% 0.499% 0.49% 0.50% 0.50%

Long Exposure incurs a minimal loss in downstream task

accuracy across all 5 tasks and 3 model sizes.

o6

More Evaluation in Paper

Full Parameter
LoRA
Long Exposure+LoRA

1. Detailed performance breakdown. = e

[prediction

Long Exposure+Bitfit

0 50 100 150 200 250 300 350 400
Execution Time (ms)

Time (ms)
w
1

2. Ablation studies on three key components.

o
L

? 750 1A100 GPT2—Large1'58X g(PT%;XL L50X1 56x1.59x
3. Sensitivity analysis on model structures. = Qigigiy bl

512 1024 Seq_Len

=@~ Long Exposure + LoRA =&~ Long Exposure + Adapter Long Exposure + Bitfit
50 — 2
2
g / N
- -~ ~ 18
7 w] =
~ - 16
A

12 =
OPT-350M | | w0 {&F OPT-1.38

2 4 1 2 4
GPU Number GPU Number GPU Number

e B
8 8

2 2 &
2 38

4. Scalability analysis with increasing machine sizes.

QPT-125M

Execution Time (ms) / Step
L

W

N \

of

Next Step

Binary
classification

on model -
parameters

A}

-

\ 4

Next Step

Binary
classification
on model
parameters

-

A}

\ 4

\ 4

Design manually or through
neural network fitting

Next Step

Binary
classification
on model
parameters

Is there a
better
alternative?

Change Sparsity Distribution

-

A}

\ 4

\ 4

\ 4

Design manually or through
neural network fitting

Next Step

Binary
classification
on model
parameters

Is there a
better
alternative?

A}

--17"0o O

\ 4

\ 4

Change Sparsity Distribution

Q.0

C,) OO Og.) Design manually or through
'\ ~~ neural network fittin
0.0-0 °

°CQ.0
OO0 oY 0 O
0 00 0 O
0-9-0 Q-

\ 4

Increase Model Density

Long Exposure

* |dentify and leverage the intrinsic sparsity within LLM fine-tuning, namely
Shadowy Sparsity.

* Design three key components that capture, predict, and exploit sparsity patterns,
respectively.

* Implement an end-to-end fine-tuning system compatible with various PEFT
techniques.

Challenge #1: How can we capture sparse patterns effectively? Overview: Long Exposure End-to-end Fine-tuning Performance (Nvidia A100 and A6000)

W Full Parameter
£ Lora Adapter 3 sitfit
B222 Long Exposure + LoRA @22 Long Exposure + Adapter Long Exposure + BitFit

The dense units for one token coincide with the sparse units for another.

Although each token may exhibit high sparsity, the overall sparsity is limited.

] A100 OPT-1.3B | OPT-2.7B 232
MLP Block I: Shadowy-sparsity Exposer Ej:: 2.46%2.77%2.97x
* capture sparse patterns E 200 1.23% 1.20x 1.33x
E >

7107
512 1024

* predict sparse patterns 288x3.42:3.82x

87 I',

7 7 7
512 1024 512 1024 Seq_len

E
Ill: Dynamic-aware Operator E
« exploit sparse patterns 0

Computation
Waste

Long Exposure outperforms existing methods by on 1.20-
2.69x across various sequence lengths and model sizes.

62

Long Exposure

* |dentify and leverage the intrinsic sparsity within LLM fine-tuning, namely
Shadowy Sparsity.

* Design three key components that capture, predict, and exploit sparsity patterns,
respectively.

* Implement an end-to-end fine-tuning system compatible with various PEFT
techniques.

Thanks for your listening!

mailto:kunli@microsoft.com
mailto:likun@microsoft.com
mailto:wtw23@mails.tsinghua.edu.c

	Beginning
	Slide 1

	Background
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

	Observation
	Slide 16
	Slide 17

	Insight
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

	Challenge
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

	Method
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

	Evaluation
	Slide 54
	Slide 55
	Slide 56
	Slide 57

	Future
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

