
Long Exposure:
Accelerating Parameter-Efficient Fine-Tuning

for LLMs under Shadowy Sparsity

Tuowei Wang*, Kun Li*, Zixu Hao, Donglin Bai,
Ju Ren, Yaoxue Zhang, Ting Cao, Mao Yang

Tsinghua University Microsoft Research

* Contributed Equally

Background: Fine-tuning is essential for LLMs

3-step LLM Paradigm:

2

Background: Fine-tuning is essential for LLMs

3-step LLM Paradigm:

3

Pre-training

Base Model

Large Data

Background: Fine-tuning is essential for LLMs

3-step LLM Paradigm:

4

Pre-training Fine-tuning

Base Model Fine-tuned
Model

Large Data Small Data

Background: Fine-tuning is essential for LLMs

3-step LLM Paradigm:

5

Pre-training Fine-tuning Inference

Base Model Fine-tuned
Model

Large Data Small Data

Content Generation

Code Development

Virtual Assistants

Search & Recommendation

… …

Background: Fine-tuning is essential for LLMs

3-step LLM Paradigm:

6

Pre-training Fine-tuning Inference

Base Model Fine-tuned
Model

Large Data Small Data

Content Generation

Code Development

Virtual Assistants

Search & Recommendation

… …

Boost LLM performance to specific tasks.

7

Background: Fine-tuning efficiency is essential for LLMs

8

Background: Fine-tuning efficiency is essential for LLMs

LLMs has experienced a trend of explosive increase in size.

• BERT 0.34B, GPT-2 1.5B, Claude2 130B, GPT-3 175B.

9

Background: Fine-tuning efficiency is essential for LLMs

LLMs has experienced a trend of explosive increase in size.

• BERT 0.34B, GPT-2 1.5B, Claude2 130B, GPT-3 175B.

Pre-trained LLMs are periodic updated, typically every few months.

• Each update triggers hundreds of fine-tuning processes.

… …

Background: Parameter-efficient Fine-tuning Techniques

10

Background: Parameter-efficient Fine-tuning Techniques

Full Fine-tuning involves updating all model parameters, which is costly.

11

Full Fine-tuning

Background: Parameter-efficient Fine-tuning Techniques

Full Fine-tuning involves updating all model parameters, which is costly.

Parameter-efficient Fine-tuning (PEFT):

Selects or injects a minimal number of parameters for adaption.

12

Full Fine-tuning

Background: Parameter-efficient Fine-tuning Techniques

Full Fine-tuning involves updating all model parameters, which is costly.

Parameter-efficient Fine-tuning (PEFT):

Selects or injects a minimal number of parameters for adaption.

13

Full Fine-tuning Outer layers Bias terms

Frozen parameters Trainable parameters

Background: Parameter-efficient Fine-tuning Techniques

Full Fine-tuning involves updating all model parameters, which is costly.

Parameter-efficient Fine-tuning (PEFT):

Selects or injects a minimal number of parameters for adaption.

14

Full Fine-tuning Outer layers Prefix ReparameterizationBias terms Adapters

Frozen parameters Trainable parameters

Background: Parameter-efficient Fine-tuning Techniques

Full Fine-tuning involves updating all model parameters, which is costly.

Parameter-efficient Fine-tuning (PEFT):

Selects or injects a minimal number of parameters for adaption.

15

Full Fine-tuning Outer layers Prefix ReparameterizationBias terms Adapters

Frozen parameters Trainable parameters

Less than 1% model parameters are trainable.

Observation: Parameter-saving isn’t proportionally time-saving

PEFT techniques fall short of achieving an expected decrease in wall-clock time.

16

Observation: Parameter-saving isn’t proportionally time-saving

PEFT techniques fall short of achieving an expected decrease in wall-clock time.

17

OPT-1.3B fine-tuning time breakdown. (ms/batch)

More than 70% wall-clock time is remained.

Insight #1: Forward and backward are the performance bottlenecks

18

Insight #1: Forward and backward are the performance bottlenecks

Fine-tuning, as well as training, consists of 3 phrases:

• Forward: calculates the loss.

19

Observation

Guess1. Forward

Insight #1: Forward and backward are the performance bottlenecks

Fine-tuning, as well as training, consists of 3 phrases:

• Forward: calculates the loss.

• Backward: calculates the gradient.

20

Observation

Guess Actual

Loss Function

Loss

1. Forward

2. Backward

Insight #1: Forward and backward are the performance bottlenecks

Fine-tuning, as well as training, consists of 3 phrases:

• Forward: calculates the loss.

• Backward: calculates the gradient.

• Optimizer step: updates the trainable parameters.

21

Observation

Guess Actual

Loss Function

Loss

Optimizer

1. Forward

2. Backward

3. Optimizer Step

Insight #1: Forward and backward are the performance bottlenecks

22

Applying LoRA to fine-tune an MLP block

Insight #1: Forward and backward are the performance bottlenecks

Forward

• Vanilla:

• LoRA:

23

𝑧𝑖 = 𝜎𝑖(𝑊𝑖𝑥)

𝑧𝑖 = 𝜎𝑖(𝑊𝑖𝑥 + 𝐵𝑖𝐴𝑖𝑥)

Applying LoRA to fine-tune an MLP block

Insight #1: Forward and backward are the performance bottlenecks

Forward

• Vanilla:

• LoRA:

Backward

• Vanilla:

• LoRA:

24

𝜕𝐿

𝜕𝑊𝑖
=

𝜕𝐿

𝜕𝑎𝑖

𝜕𝑎𝑖
𝜕𝑧𝑖

𝜕𝑧𝑖
𝜕𝑊𝑖

𝜕𝐿

𝜕𝐴𝑖
=

𝜕𝐿

𝜕𝑎𝑖

𝜕𝑎𝑖
𝜕𝑧𝑖

𝜕𝑧𝑖
𝜕𝐵𝑖𝐴𝑖

𝜕𝐵𝑖𝐴𝑖
𝜕𝐴𝑖

𝜕𝐿

𝜕𝐵𝑖
=

𝜕𝐿

𝜕𝑎𝑖

𝜕𝑎𝑖
𝜕𝑧𝑖

𝜕𝑧𝑖
𝜕𝐵𝑖𝐴𝑖

𝜕𝐵𝑖𝐴𝑖
𝜕𝐵𝑖

𝑧𝑖 = 𝜎𝑖(𝑊𝑖𝑥)

𝑧𝑖 = 𝜎𝑖(𝑊𝑖𝑥 + 𝐵𝑖𝐴𝑖𝑥)

Applying LoRA to fine-tune an MLP block

Insight: Forward and backward are the performance bottlenecks

Forward

• Vanilla:

• LoRA:

Backward

• Vanilla:

• LoRA:

Optimizer step

• Reduced due to fewer trainable parameters.

• Savings vary with the choice of optimizer.
25

𝜕𝐿

𝜕𝑊𝑖
=

𝜕𝐿

𝜕𝑎𝑖

𝜕𝑎𝑖
𝜕𝑧𝑖

𝜕𝑧𝑖
𝜕𝑊𝑖

𝜕𝐿

𝜕𝐴𝑖
=

𝜕𝐿

𝜕𝑎𝑖

𝜕𝑎𝑖
𝜕𝑧𝑖

𝜕𝑧𝑖
𝜕𝐵𝑖𝐴𝑖

𝜕𝐵𝑖𝐴𝑖
𝜕𝐴𝑖

𝜕𝐿

𝜕𝐵𝑖
=

𝜕𝐿

𝜕𝑎𝑖

𝜕𝑎𝑖
𝜕𝑧𝑖

𝜕𝑧𝑖
𝜕𝐵𝑖𝐴𝑖

𝜕𝐵𝑖𝐴𝑖
𝜕𝐵𝑖

𝑧𝑖 = 𝜎𝑖(𝑊𝑖𝑥)

𝑧𝑖 = 𝜎𝑖(𝑊𝑖𝑥 + 𝐵𝑖𝐴𝑖𝑥)

Applying LoRA to fine-tune an MLP block

Insight: Forward and backward are the performance bottlenecks

Forward

• Vanilla:

• LoRA:

Backward

• Vanilla:

• LoRA:

Optimizer step

• Reduced due to fewer trainable parameters.

• Savings vary with the choice of optimizer.
26

𝜕𝐿

𝜕𝑊𝑖
=

𝜕𝐿

𝜕𝑎𝑖

𝜕𝑎𝑖
𝜕𝑧𝑖

𝜕𝑧𝑖
𝜕𝑊𝑖

𝜕𝐿

𝜕𝐴𝑖
=

𝜕𝐿

𝜕𝑎𝑖

𝜕𝑎𝑖
𝜕𝑧𝑖

𝜕𝑧𝑖
𝜕𝐵𝑖𝐴𝑖

𝜕𝐵𝑖𝐴𝑖
𝜕𝐴𝑖

𝜕𝐿

𝜕𝐵𝑖
=

𝜕𝐿

𝜕𝑎𝑖

𝜕𝑎𝑖
𝜕𝑧𝑖

𝜕𝑧𝑖
𝜕𝐵𝑖𝐴𝑖

𝜕𝐵𝑖𝐴𝑖
𝜕𝐵𝑖

𝑧𝑖 = 𝜎𝑖(𝑊𝑖𝑥)

𝑧𝑖 = 𝜎𝑖(𝑊𝑖𝑥 + 𝐵𝑖𝐴𝑖𝑥)
OPT-1.3B fine-tuning time breakdown. (ms/batch)

Forward and Backward are the bottlenecks.

Insight: PEFT and inference share high similarity

In both PEFT and inference, most model parameters remain frozen.

27

Insight: PEFT and inference share high similarity

In both PEFT and inference, most model parameters remain frozen.

Sparsity has been widely used for model inference acceleration.

28

Insight: PEFT and inference share high similarity

In both PEFT and inference, most model parameters remain frozen.

Sparsity has been widely used for model inference acceleration.

29

LLM A LLM B

Input X

Output Y

prune

Static Sparsity

Insight: PEFT and inference share high similarity

In both PEFT and inference, most model parameters remain frozen.

Sparsity has been widely used for model inference acceleration.

30

LLM A LLM B

Input X

Output Y

prune

Static Sparsity

 Costly Retraining.

Insight: PEFT and inference share high similarity

In both PEFT and inference, most model parameters remain frozen.

Sparsity has been widely used for model inference acceleration.

31

LLM A LLM B

Input X

Output Y

prune

Static Sparsity

 Costly Retraining.

 Generalization Loss.

Insight: PEFT and inference share high similarity

In both PEFT and inference, most model parameters remain frozen.

Sparsity has been widely used for model inference acceleration.

32

LLM A LLM B

Input X

Output Y

prune
LLM A LLM B

Input X

Output Y

selectively
activate

predict

Static Sparsity Activation Sparsity

Insight: PEFT and inference share high similarity

Why not build a bridge between PEFT and inference by capturing LLM sparsity?

• Backbone models are frozen.

• Activation sparsity also exists.

• Fine-tuning can be even more robust.

33

Insight: PEFT and inference share high similarity

Why not build a bridge between PEFT and inference by capturing LLM sparsity?

• Backbone models are frozen.

• Activation sparsity also exists.

• Fine-tuning can be even more robust.

34

Parameter-Efficient
Fine-tuning

Computation-Efficient
Inference

Sparsity

Computation-Efficient and Parameter-Efficient Fine-tuning.

Challenge: Sparsity is superimposed of token batches during fine-tuning

In inference, the model input is a single token.

In fine-tuning, the model input is a sequence of tokens.

35

The overall sparsity pattern is the
overlapped sparsity of different
tokens – Shadowy Sparsity.

Challenge: Sparsity is superimposed of token batches during fine-tuning

In inference, the model input is a single token.

In fine-tuning, the model input is a sequence of tokens.

36

1. How can we capture sparse patterns effectively?

2. How can we predict sparse patterns seamlessly?

3. How can we perform on sparse patterns efficiently?

Challenge #1: How can we capture sparse patterns effectively?

The dense units for one token coincide with the sparse units for another.

Although each token may exhibit high sparsity, the overall sparsity is limited.

37

Computation
Waste

Challenge #2: How can we predict sparse patterns seamlessly?

Obtain gain from activation sparsity requires prediction.

Neural-networks-based prediction has shown promise in LLM inference.

This prediction could become costly in fine-tuning due to large input size.

38

Input

Predictor

Challenge #3: How can we perform on sparsity patterns efficiently?

Sparse operations are challenging due to scattered memory accesses.

Besides, the computation patterns vary with different inputs at runtime.

Existing tools are limited by static sparsity or introduce conversion overhead.

39

Input X Input Y

Step 1 Step 2

Overview: Long Exposure

40

I: Shadowy-sparsity Exposer
• capture sparse patterns

II: Sequence-oriented Predictor
• predict sparse patterns

III: Dynamic-aware Operator
• exploit sparse patterns

Component #1: Shadow-sparsity Exposer

Core idea: Explore the intricate details of individual sparse patterns.

41

Component #1: Shadow-sparsity Exposer

Core idea: Explore the intricate details of individual sparse patterns.

MHA: Head-specific sparse mask

• Emphasize the strong interactions among different tokens.

• Consider the unique data distribution of each head.

42

Component #1: Shadow-sparsity Exposer

Core idea: Explore the intricate details of individual sparse patterns.

MLP: Threshold-based filter

• Emphasize both the activated counts and activated values of each neurons.

• Employ a block-wise manner to align with the hardware characteristics.

43

Component #2: Sequence-oriented Predictor

44

Component #2: Sequence-oriented Predictor

Core idea I: Effectiveness

• Prioritize recall over precision.

• Add noise for avoiding overfitting.

45

Component #2: Sequence-oriented Predictor

Core idea I: Effectiveness

• Prioritize recall over precision.

• Add noise for avoiding overfitting.

Core idea II: Efficiency

• Make predictions at the token level and then
reduce the results.

• Simplify the objective: from values to pattern.

46

Component #2: Sequence-oriented Predictor

Core idea I: Effectiveness

• Prioritize recall over precision.

• Add noise for avoiding overfitting.

Core idea II: Efficiency

• Make predictions at the token level and then
reduce the results.

• Simplify the objective: from values to pattern.

47

Savings: 𝑂(𝑠2) to 𝑂(𝑠)

Overhead:

Savings: depends on sparsity ratio, around 0.8-0.9

Overhead:

Component #3: Dynamic-aware Operator

Core idea: Simple and efficient; focused on the task at hand.

48

Component #3: Dynamic-aware Operator

Core idea: Simple and efficient; focused on the task at hand.

MHA: Two-stage algorithm

Offline Pool Construction

• Construct an atomic sparse pattern pool.

• Pre-calculate their layout lookup tables.

49

Component #3: Dynamic-aware Operator

Core idea: Simple and efficient; focused on the task at hand.

MHA: Two-stage algorithm

Offline Pool Construction

• Construct an atomic sparse pattern pool.

• Pre-calculate their layout lookup tables.

Online Pattern Combination

• Combine atomic sparse patterns at runtime.

• Flexible yet incurs minimal overhead.

50

Component #3: Dynamic-aware Operator

Core idea: Simple and efficient; focused on the task at hand.

MLP: Neuron (i.e., a column or row in the weight matrix) is the basic unit.

51

Component #3: Dynamic-aware Operator

Core idea: Simple and efficient; focused on the task at hand.

MLP: Neuron (i.e., a column or row in the weight matrix) is the basic unit.

Tiling Technique

• The block manner aligns with the tiling technique in GEMM.

• Only the activated blocks are loaded and processed.

52

Component #3: Dynamic-aware Operator

Core idea: Simple and efficient; focused on the task at hand.

MLP: Neuron (i.e., a column or row in the weight matrix) is the basic unit.

Tiling Technique

• The block manner aligns with the tiling technique in GEMM.

• Only the activated blocks are loaded and processed.

Memory Coalescing

• Store the weights based on their access patterns.

• Column-major for the up projection and row-major for the down projection.

53

End-to-end Fine-tuning Performance (Nvidia A100 and A6000)

54

Long Exposure outperforms existing methods by on average
1.20-2.69x across various sequence lengths and model sizes.

End-to-end Fine-tuning Memory Footprint (Nvidia A100)

55

Long Exposure alters the memory complexity from 𝑶(𝒔𝟐) to 𝑶(𝒔), achieving
1.69x-2.77x memory reduction compared to PyTorch Implementation.

Model Accuracy on Downstream Tasks

56

Long Exposure incurs a minimal loss in downstream task
accuracy across all 5 tasks and 3 model sizes.

More Evaluation in Paper

1. Detailed performance breakdown.

2. Ablation studies on three key components.

3. Sensitivity analysis on model structures.

4. Scalability analysis with increasing machine sizes.

57

Next Step

58

Binary
classification
on model
parameters

Next Step

59

Design manually or through
neural network fitting

Binary
classification
on model
parameters

Next Step

60

Design manually or through
neural network fitting

Binary
classification
on model
parameters

Is there a
better
alternative?

Change Sparsity Distribution

Next Step

61

Design manually or through
neural network fitting

Binary
classification
on model
parameters

Is there a
better
alternative?

Change Sparsity Distribution Increase Model Density

Long Exposure

• Identify and leverage the intrinsic sparsity within LLM fine-tuning, namely
Shadowy Sparsity.

• Design three key components that capture, predict, and exploit sparsity patterns,
respectively.

• Implement an end-to-end fine-tuning system compatible with various PEFT
techniques.

62

Long Exposure

• Identify and leverage the intrinsic sparsity within LLM fine-tuning, namely
Shadowy Sparsity.

• Design three key components that capture, predict, and exploit sparsity patterns,
respectively.

• Implement an end-to-end fine-tuning system compatible with various PEFT
techniques.

63

kunli@microsoft.com renju@tsinghua.edu.cn

wtw23@mails.tsinghua.edu.cn

Thanks for your listening!

mailto:kunli@microsoft.com
mailto:likun@microsoft.com
mailto:wtw23@mails.tsinghua.edu.c

	Beginning
	Slide 1

	Background
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

	Observation
	Slide 16
	Slide 17

	Insight
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

	Challenge
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

	Method
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

	Evaluation
	Slide 54
	Slide 55
	Slide 56
	Slide 57

	Future
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

