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Background: Activation Sparsity in on-Device LLM Inference

• There is a growing demand for deploying LLMs on mobile devices, such as smartphones.

• Given the limited DRAM capacity, activation sparsity is widely used to support on-device LLM inference.

• The full model parameters are stored in the much larger flash memory.
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• There is a growing demand for deploying LLMs on mobile devices, such as smartphones.

• Given the limited DRAM capacity, activation sparsity is widely used to support on-device LLM inference.

• The full model parameters are stored in the much larger flash memory.

• For a given input, only a subset of relevant model parameters is identified.

• The corresponding activated neurons are loaded from flash memory into DRAM.

• Sparse computation is then performed, producing outputs that are nearly the same as those of dense models.
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Background: Activation Sparsity in on-Device LLM Inference

• There is a growing demand for deploying LLMs on mobile devices, such as smartphones.

• Given the limited DRAM capacity, activation sparsity is widely used to support on-device LLM inference.

• The full model parameters are stored in the much larger flash memory.

• For a given input, only a subset of relevant model parameters is identified.

• The corresponding activated neurons are loaded from flash memory into DRAM.

• Sparse computation is then performed, producing outputs that are nearly the same as those of dense models.

• The I/O overhead between flash memory and DRAM becomes the primary bottleneck.
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Breakdown of inference latency per token when 
offloading FFN blocks to flash memory on OnePlus Ace2.



Motivation: IOPS as the Performance Bottleneck

• Mobile devices utilize Universal Flash Storage (USF) as the storage protocol.

• Compared to server-side NVMe, UFS provides a much shallower command queue (e.g., 32 entries in UFS 4.0).

• This limitation restricts flash read I/O Operations Per Second (IOPS) and prevents full utilization of the bandwidth.



Motivation: IOPS as the Performance Bottleneck

• Mobile devices utilize Universal Flash Storage (USF) as the storage protocol.

• Compared to server-side NVMe, UFS provides a much shallower command queue (e.g., 32 entries in UFS 4.0).

• This limitation restricts flash read I/O Operations Per Second (IOPS) and prevents full utilization of the bandwidth.

• The scattered activation of parameters induces numerous small-grained read accesses, further intensifying the constraint.

Latency (ms) and bandwidth (MB/s) across different ratios 
of non-activated neurons in OPT-350M on OnePlus 12.



Observation: Neuron Co-Activation Phenomenon

• Conventional model-structure-based placement scatters activated parameters across flash memory.

• Neuron Co-Activation:

• Some neurons tend to be activated together with a relatively fixed set of other neurons.

• Prevalent across different model structures and datasets.

• Insight: Co-locating frequently co-activated neurons in flash memory to enable more continuous reads.



Challenge 1: Extensive Search Space
The immense number of neurons in LLM results in an exponentially 
large space of possible placement combinations.
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Observation: Neuron Co-Activation Phenomenon

• Conventional model-structure-based placement scatters activated parameters across flash memory.

• Neuron Co-Activation:

• Some neurons tend to be activated together with a relatively fixed set of other neurons.

• Prevalent across different model structures and datasets.

• Insight: Co-locating frequently co-activated neurons in flash memory to enable more continuous reads.

Challenge 1: Extensive Search Space
The immense number of neurons in LLM results in an exponentially 
large space of possible placement combinations.

Challenge 2: Inherent Activation Dynamics
The activation patterns of parameters inherently exhibit dynamics 
across varying inputs, causing unexpected discontinuities.

Challenge 3: Misaligned Cache Strategy
Existing cache strategies treat neurons individually, leading to 
fragmentation in their placement in flash memory.



Design: Neuralink Overview

• We propose Neuralink, an approach to accelerating LLM inference on smartphones through optimized I/O access.

• Offline Correlation-Aware Clustering: Identifies an optimized neuron placement in flash memory.

• Online Continuity-Centric Processing: Employs customized data access and DRAM management at runtime.



Design: Neuralink Overview

• We propose Neuralink, an approach to accelerating LLM inference on smartphones through optimized I/O access.

• Offline Correlation-Aware Clustering: Identifies an optimized neuron placement in flash memory.

• Online Continuity-Centric Processing: Employs customized data access and DRAM management at runtime.

Neuralink shifts the I/O bottleneck from IOPS to Bandwidth!



Offline Design: Correlation-Aware Clustering

• Step 1: Extract neuron co-activation patterns from profiling results.

Co-activation probability of neuron 𝑛! and neuron 𝑛":
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Offline Design: Correlation-Aware Clustering

• Step 1: Extract neuron co-activation patterns from profiling results.

• Step 2: Model neuron placement in flash memory using a graph-based representation.

• Step 3: Design a polynomial-time heuristic algorithm to search for an optimized neuron placement.

Distance between two neurons links:

Distance between two neurons:

Co-activation probability of neuron 𝑛! and neuron 𝑛":



Online Design: Continuity-Centric Processing

• IOPS-Friendly Access Collapse: Strategically merges nearby read accesses to reduce I/O operations.

• If the number of neurons between two neuron links falls below a threshold, access collapse is applied.

• When bandwidth is fully utilized, the system reverts to the original access strategy.



Online Design: Continuity-Centric Processing

• IOPS-Friendly Access Collapse: Strategically merges nearby read accesses to reduce I/O operations.

• If the number of neurons between two neuron links falls below a threshold, access collapse is applied.

• When bandwidth is fully utilized, the system reverts to the original access strategy.

• Linking-Aligned Cache Policy: Caches neurons in DRAM at the granularity of neuron segments.

• Prioritizes caching outlier neurons that are co-activated with only a small number of surrounding neurons.

• Caches continuous segments with lower priority than outlier neurons.



Evaluation – Overall Performance

• 7 Models × 8 Datasets × 3 Hardware × 3 Baselines (llama.cpp, LLMFlash, Neuralink-S)

• End-to-end Latency: Achieves average speedups of 2.37×, 1.48×, and 1.25× over the three baselines.

• Effective Bandwidth: Achieves average improvements of 3.28×, 1.80×, and 1.36× over the three baselines.



Evaluation – Ablation and Sensitivity Analysis

• Statistical information on read access lengths per token.

• Neuralink increases the average read access lengths to 3.12 (from 1.06) and 6.62 (from 1.42) across OPT-L and Llama-2.



Evaluation – Ablation and Sensitivity Analysis

• Statistical information on read access lengths per token.

• Neuralink increases the average read access lengths to 3.12 (from 1.06) and 6.62 (from 1.42) across OPT-L and Llama-2.

• Performance across different combinations of profiling (rows) and testing (columns) datasets.

• Neuron co-activation patterns are largely intrinsic to the LLM and are minimally affected by input variations.



Related Works and Implementations

• I/O + Model Weight:

• Neuralink: Fast LLM Inference on Smartphones with Neuron Co-Activation Linking

• I/O + KV Cache:

• DynaKV: Enabling Accurate and Efficient Long-Sequence LLM Decoding on Smartphones

• Compute + Test-Time Scaling:

• Scaling LLM Test-Time Compute with Mobile NPU on Smartphones

• On-Device NPU Operator Library:

• https://github.com/omnimind-ai/OmniOp-NPU

• On-Device LLM Inference Framework:

• https://github.com/omnimind-ai/OmniInfer-LLM

• On-Device VLM Inference Framework:

• https://github.com/omnimind-ai/OmniInfer-VLM
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