‘~\\\\\\\\“.
2N .

/ t.} SN ‘0,‘
! ~ ‘; - ",
2|4 =87
azg
0 2%

%

Q=19

Neuralink: Fast LLM Inference on Smartphones
with Neuron Co-Activation Linking

Tuowei Wang*, Ruwen Fan*, Minxing Huang, Zixu Hao, Kun Li, Ting Cao,
Youyou Lu, Ju Ren

Tsinghua University



‘~\\\\\\\\“.
2N .

/ t.} SN ‘0,‘
! ~ ‘; - ",
2|4 =87
azg
0 2%

%

Q=19

Neuralink: Fast LLM Inference on Smartphones
with Neuron Co-Activation Linking

Tuowei Wang*, Ruwen Fan*, Minxing Huang, Zixu Hao, Kun Li, Ting Cao,
Youyou Lu, Ju Ren

Tsinghua University



Background: Activation Sparsity in on-Device LLM Inference

* There is a growing demand for deploying LLMs on mobile devices, such as smartphones.
* Given the limited DRAM capacity, activation sparsity is widely used to support on-device LLM inference.

* The full model parameters are stored in the much larger flash memory.
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Background: Activation Sparsity in on-Device LLM Inference

e There is a growing demand for deploying LLMs on mobile devices, such as smartphones.
* Given the limited DRAM capacity, activation sparsity is widely used to support on-device LLM inference.
* The full model parameters are stored in the much larger flash memory.

* For a given input, only a subset of relevant model parameters is identified.
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Background: Activation Sparsity in on-Device LLM Inference

* There is a growing demand for deploying LLMs on mobile devices, such as smartphones.

* Given the limited DRAM capacity, activation sparsity is widely used to support on-device LLM inference.
* The full model parameters are stored in the much larger flash memory.

* For agiven input, only a subset of relevant model parameters is identified.

* The corresponding activated neurons are loaded from flash memory into DRAM.
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Background: Activation Sparsity in on-Device LLM Inference

* There is a growing demand for deploying LLMs on mobile devices, such as smartphones.

* Given the limited DRAM capacity, activation sparsity is widely used to support on-device LLM inference.

* The full model parameters are stored in the much larger flash memory.
* For agiven input, only a subset of relevant model parameters is identified.

* The corresponding activated neurons are loaded from flash memory into DRAM.

e Sparse computation is then performed, producing outputs that are nearly the same as those of dense models.
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Background: Activation Sparsity in on-Device LLM Inference

* There is a growing demand for deploying LLMs on mobile devices, such as smartphones.

* Given the limited DRAM capacity, activation sparsity is widely used to support on-device LLM inference.
* The full model parameters are stored in the much larger flash memory.
* For agiven input, only a subset of relevant model parameters is identified.
* The corresponding activated neurons are loaded from flash memory into DRAM.

e Sparse computation is then performed, producing outputs that are nearly the same as those of dense models.

* The l/O overhead between flash memory and DRAM becomes the primary bottleneck.

Layer i: /\ Breakdown of inference latency per token when
y Flash Memory /| @ Load DRAM . yP
Activated offloading FFN blocks to flash memory on OnePlus Ace2.
~100GB ~10GB
Current Neurons
layer’s input W1 [Wip(Wi3(WiaN 1GB/s Wy |Wiawis|wis Model Compute I/0 Total | I/O Ratio
X1 W1 |Wos Wy s|Wos Waq [Waz|Waz|Was OPT-350M 82 ms 776 ms 858 ms 90.4%
Bottleneck! OPT-1.3B 202 ms 988 ms 1,190 ms 83.0%
X2 W31|W32(W33|W34 ’
9 Perform ~ 100GB/s OPT-6.7B 804 ms 2,224ms 3,028 ms 73.4%
X3 0 W1 Wi |Waz|Was Inference Llama-2-7B 609 ms 10,388 ms 10,997 ms 94.5%
. Processing Mistral-7B 540 ms 12,220 ms 12,760 ms 95.8%
X |dent|fy We1 lWeo lWealw .
4 Activation 51{™52["53[™54 Unit MobiLlama-1B 230ms 1,909ms 2,139 ms 89.2%
] Phi-2-2.7B 461ms 1,976 ms 2,437 ms 81.1%
Model Weights




Motivation: IOPS as the Performance Bottleneck

* Mobile devices utilize Universal Flash Storage (USF) as the storage protocol.
« Compared to server-side NVMe, UFS provides a much shallower command queue (e.g., 32 entries in UFS 4.0).

 This limitation restricts flash read I/O Operations Per Second (IOPS) and prevents full utilization of the bandwidth.

2500 , —
2000 - e
Q i
m ,/’
= 1500 - -
=
©
2 1000 —
C
©
om
500 -
Bandwidth
Bound
O 1 1 T T T T
4 8 1216 24 32 64

IO Size (KB)



Motivation: IOPS as the Performance Bottleneck

* Mobile devices utilize Universal Flash Storage (USF) as the storage protocol.

* Compared to server-side NVMe, UFS provides a much shallower command queue (e.g., 32 entries in UFS 4.0).

 This limitation restricts flash read I/O Operations Per Second (IOPS) and prevents full utilization of the bandwidth.

* The scattered activation of parameters induces numerous small-grained read accesses, further intensifying the constraint.

Bandwidth (MB/s)
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Latency (ms) and bandwidth (MB/s) across different ratios
of non-activated neurons in OPT-350M on OnePlus 12.

Ratio dense 10% 20% 30% 40%
Bandwidth | 1637.61 | 1355.35 | 1089.24 | 904.69 | 746.03
Latency 234.49 254.96 281.96 297.10 | 308.76
Speedup - 0.92 0.83 | 079 | 0.76
Ratio 50% 60% 70% / 80% \ 90%
Bandwidth | 598.82 524.50 441.33 396.43 (] 368.05
Latency 320.63 292.78 260.86 193.68 | 104.18
Speedup 0.73 0.80 0.90 1.21 2.25
-




Observation: Neuron Co-Activation Phenomenon

« Conventional model-structure-based placement scatters activated parameters across flash memory.

e Neuron Co-Activation:

 Some neurons tend to be activated together with a relatively fixed set of other neurons.

* Prevalent across different model structures and datasets.

* Insight: Co-locating frequently co-activated neurons in flash memory to enable more continuous reads.

Alpaca OpenWebText  WikiText
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Observation: Neuron Co-Activation Phenomenon

Conventional model-structure-based placement scatters activated parameters across flash memory.

Neuron Co-Activation:

 Some neurons tend to be activated together with a relatively fixed set of other neurons.

* Prevalent across different model structures and datasets.

Insight: Co-locating frequently co-activated neurons in flash memory to enable more continuous reads.
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Challenge 1: Extensive Search Space
The immense number of neurons in LLM results in an exponentially
large space of possible placement combinations.




Observation: Neuron Co-Activation Phenomenon

Conventional model-structure-based placement scatters activated parameters across flash memory.

Neuron Co-Activation:

 Some neurons tend to be activated together with a relatively fixed set of other neurons.

* Prevalent across different model structures and datasets.
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The activation patterns of parameters inherently exhibit dynamics

\across varying inputs, causing unexpected discontinuities.




Observation: Neuron Co-Activation Phenomenon

Conventional model-structure-based placement scatters activated parameters across flash memory.

Neuron Co-Activation:

 Some neurons tend to be activated together with a relatively fixed set of other neurons.

* Prevalent across different model structures and datasets.

Insight: Co-locating frequently co-activated neurons in flash memory to enable more continuous reads.
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Challenge 1: Extensive Search Space
The immense number of neurons in LLM results in an exponentially
kIarge space of possible placement combinations.

Challenge 2: Inherent Activation Dynamics
The activation patterns of parameters inherently exhibit dynamics
kacross varying inputs, causing unexpected discontinuities.

(
Challenge 3: Misaligned Cache Strategy
Existing cache strategies treat neurons individually, leading to

kfragmentation in their placement in flash memory.




Design: Neuralink Overview

We propose Neuralink, an approach to accelerating LLM inference on smartphones through optimized I/O access.

* Offline Correlation-Aware Clustering: Identifies an optimized neuron placement in flash memory.

* Online Continuity-Centric Processing: Employs customized data access and DRAM management at runtime.
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Design: Neuralink Overview

* We propose Neuralink, an approach to accelerating LLM inference on smartphones through optimized I/O access.
* Offline Correlation-Aware Clustering: Identifies an optimized neuron placement in flash memory.
* Online Continuity-Centric Processing: Employs customized data access and DRAM management at runtime.
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Offline Design: Correlation-Aware Clustering

Step 1: Extract neuron co-activation patterns from profiling results.

Co-activation probability of neuron n; and neuron n;: P(ij) =

f(ni,nj)
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Offline Design: Correlation-Aware Clustering

e Step 1: Extract neuron co-activation patterns from profiling results.
f(ni, nj)
Z;c\l;l Z;\=r1 f(nk’ nl)

e Step 2: Model neuron placement in flash memory using a graph-based representation.

Co-activation probability of neuron n; and neuron n;: P(ij) =

Distance between two neurons: dist(n;, nj) =1 — P(ij)
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Offline Design: Correlation-Aware Clustering

e Step 1: Extract neuron co-activation patterns from profiling results.
f(nis nj)
22,:1 Z;\zrl f(nka nl)

e Step 2: Model neuron placement in flash memory using a graph-based representation.

Co-activation probability of neuron n; and neuron n;: P(ij) =

Distance between two neurons: dist(n;, nj) := 1 — P(ij)

» Step 3: Design a polynomial-time heuristic algorithm to search for an optimized neuron placement.
Distance between two neurons links: dist(l;, [;) := min{dist(l;(h), [; (h)), dist(l;(h), L;(¢)), dist(L;(¢), 1i(h)), dist(l;(¢),1; (1))}
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Online Design: Continuity-Centric Processing

* |OPS-Friendly Access Collapse: Strategically merges nearby read accesses to reduce I/O operations.
e If the number of neurons between two neuron links falls below a threshold, access collapse is applied.

When bandwidth is fully utilized, the system reverts to the original access strategy.

neuron states: Bandwidth Bandwidth
(O activated () merged () non-activated ~ Capacity Utilization
A
Naive: Bandwidth Waste -
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Online Design: Continuity-Centric Processing

* |OPS-Friendly Access Collapse: Strategically merges nearby read accesses to reduce I/O operations.
e If the number of neurons between two neuron links falls below a threshold, access collapse is applied.
When bandwidth is fully utilized, the system reverts to the original access strategy.

* Linking-Aligned Cache Policy: Caches neurons in DRAM at the granularity of neuron segments.
* Prioritizes caching outlier neurons that are co-activated with only a small number of surrounding neurons.

e Caches continuous segments with lower priority than outlier neurons.

neuron states: Bandwidth Bandwidth
(O activated () merged () non-activated ~ Capacity Utilization
A
Naive: Bandwidth Waste -
alve: ‘.‘-‘- ............ Entry
IOPS-Bound @ @ % @ | 50%
*access 1 iaccess 2 *access 3 E> T
E
OOOLEE| @eele™

2>1
iaccess 1 . &access 2 |:>
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Evaluation — Overall Performance

7 Models x 8 Datasets x 3 Hardware x 3 Baselines (llama.cpp, LLMFlash, Neuralink-S)

Achieves average speedups of 2.37x, 1.48%, and 1.25x over the three baselines.

End-to-end Latency

Achieves average improvements of 3.28x, 1.80x, and 1.36x over the three baselines.

Effective Bandwidth

1.Alpaca 2.0penWebText 3.WikiText

Dataset:

G.Phi-2

LLM: A.OPT-S B.OPT-M C.OPT-L D.Llama-2 E.Mistral F.MobilLlama

Neuralink

%Y
X

8 Neuralink-S

LLMFlash

2

QS Baseline

(a) OnePlus 12

D1 D2 D3 E1 E2 E3 F1 F2 F3 G1 G2 G383

CcC2 C3

C1

B3

Aousre] pu

D1

C2 C3

C1



Evaluation — Ablation and Sensitivity Analysis

Statistical information on read access lengths per token.
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Evaluation — Ablation and Sensitivity Analysis

 Statistical information on read access lengths per token.

* Neuralink increases the average read access lengths to 3.12 (from 1.06) and 6.62 (from 1.42) across OPT-L and Llama-2.

LLMFlash () Neuralink-S & Neuralink
3 | 10*-
:5>10 TN 102
Q N ]
o
141 1

7\36’76‘6‘)0«9707,6}4

* Performance across different combinations of profiling (rows) and testing (columns) datasets.

* Neuron co-activation patterns are largely intrinsic to the LLM and are minimally affected by input variations.

Testing D i
Model Profiling Dataset esting Dataset Model Profiling Dataset Testing Dataset
Alpaca OpenWebText WikiText Alpaca OpenWebText WikiText
Alpaca 711.09ms  809.80ms  800.46 ms Alpaca 4405.76 ms  4537.75ms 3747.40 ms
Speedup 1.86X% 1.65% 1.59% Speedup 1.27% 1.17% 1.45%
OPT-L OpenWebText 856.48 ms  802.01ms  800.26 ms Llama-2 OpenWebText 3546.12 ms 4118.59ms 4318.28 ms
Speedup 1.54% 1.67X 1.59% Speedup 1.57% 1.29% 1.26X
WikiText 823.93ms 1031.41ms 784.19 ms WikiText 4769.36 ms 4535.48 ms 4578.87 ms

Speedup 1.60% 1.30% 1.63% Speedup 1.17% 1.17% 1.18%




Related Works and Implementations

1/0 + Model Weight:

* Neuralink: Fast LLM Inference on Smartphones with Neuron Co-Activation Linking

* 1/0 + KV Cache:
* DynaKV: Enabling Accurate and Efficient Long-Sequence LLM Decoding on Smartphones

 Compute + Test-Time Scaling:

e Scaling LLM Test-Time Compute with Mobile NPU on Smartphones

* On-Device NPU Operator Library:

* https://github.com/omnimind-ai/OmniOp-NPU
* On-Device LLM Inference Framework:

* https://github.com/omnimind-ai/Omnilnfer-LLM
* On-Device VLM Inference Framework:

* https://github.com/omnimind-ai/Omnilnfer-VLM



Thank you.
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