

ASPLOS 2025

清华大学
Tsinghua University

Neuralink: Fast LLM Inference on Smartphones with Neuron Co-Activation Linking

Tuwei Wang*, Ruwen Fan*, Minxing Huang, Zixu Hao, Kun Li, Ting Cao,
Youyou Lu, Ju Ren

Tsinghua University

ASPLOS 2025

清华大学
Tsinghua University

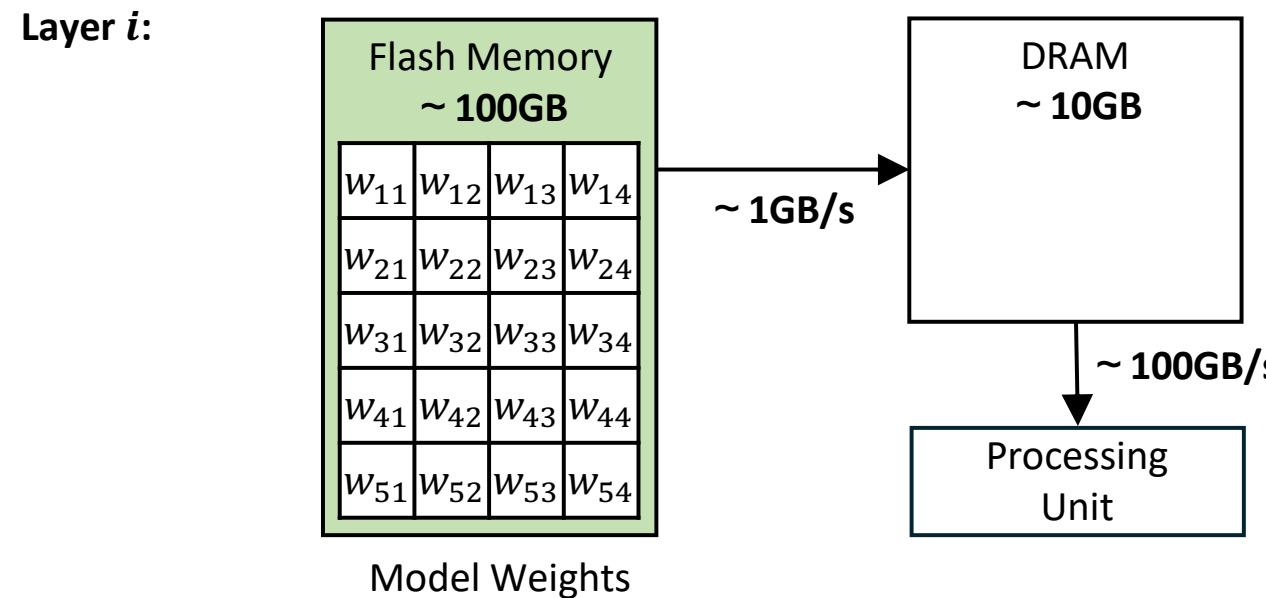
Neuralink: Fast LLM Inference on Smartphones with Neuron Co-Activation Linking

Tuwei Wang*, Ruwen Fan*, Minxing Huang, Zixu Hao, Kun Li, Ting Cao,
Youyou Lu, Ju Ren

Tsinghua University

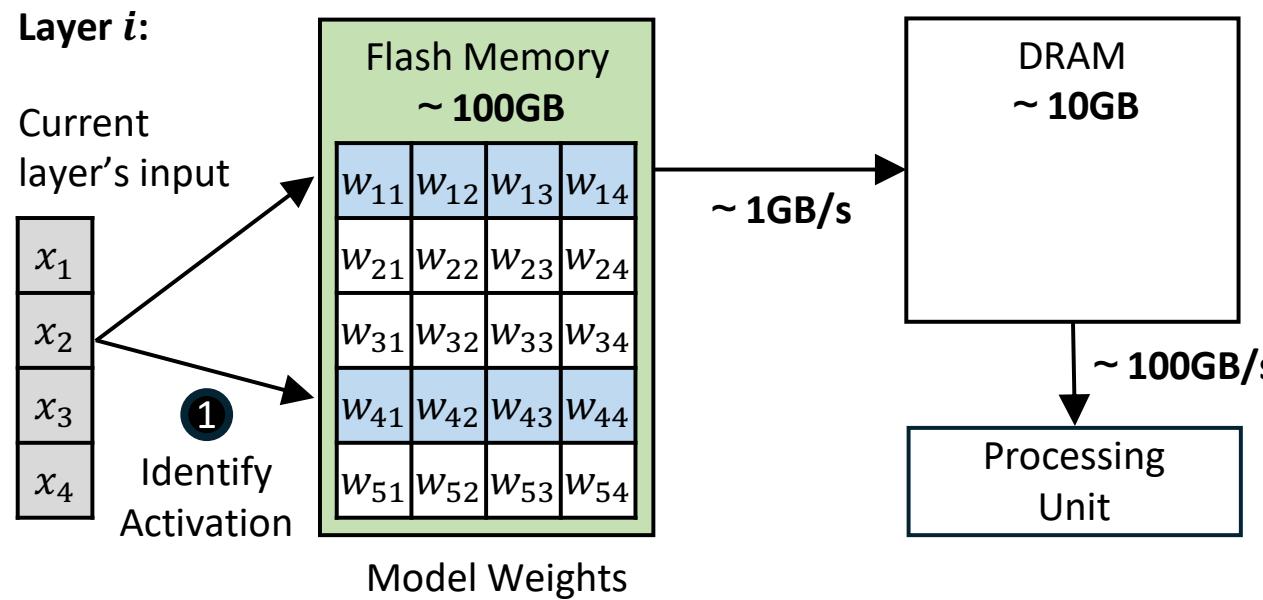
Background: Activation Sparsity in on-Device LLM Inference

- There is a growing demand for deploying LLMs on **mobile devices**, such as smartphones.
- Given the limited DRAM capacity, **activation sparsity** is widely used to support on-device LLM inference.
 - The full model parameters are stored in the much larger flash memory.



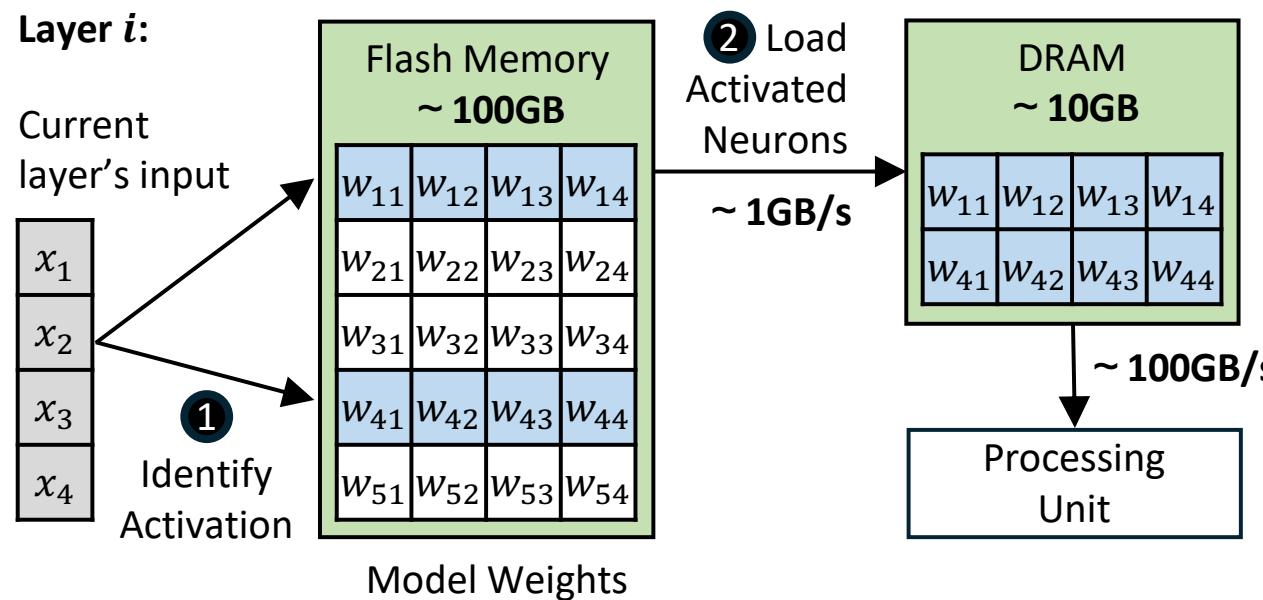
Background: Activation Sparsity in on-Device LLM Inference

- There is a growing demand for deploying LLMs on **mobile devices**, such as smartphones.
- Given the limited DRAM capacity, **activation sparsity** is widely used to support on-device LLM inference.
 - The full model parameters are stored in the much larger flash memory.
 - **For a given input, only a subset of relevant model parameters is identified.**



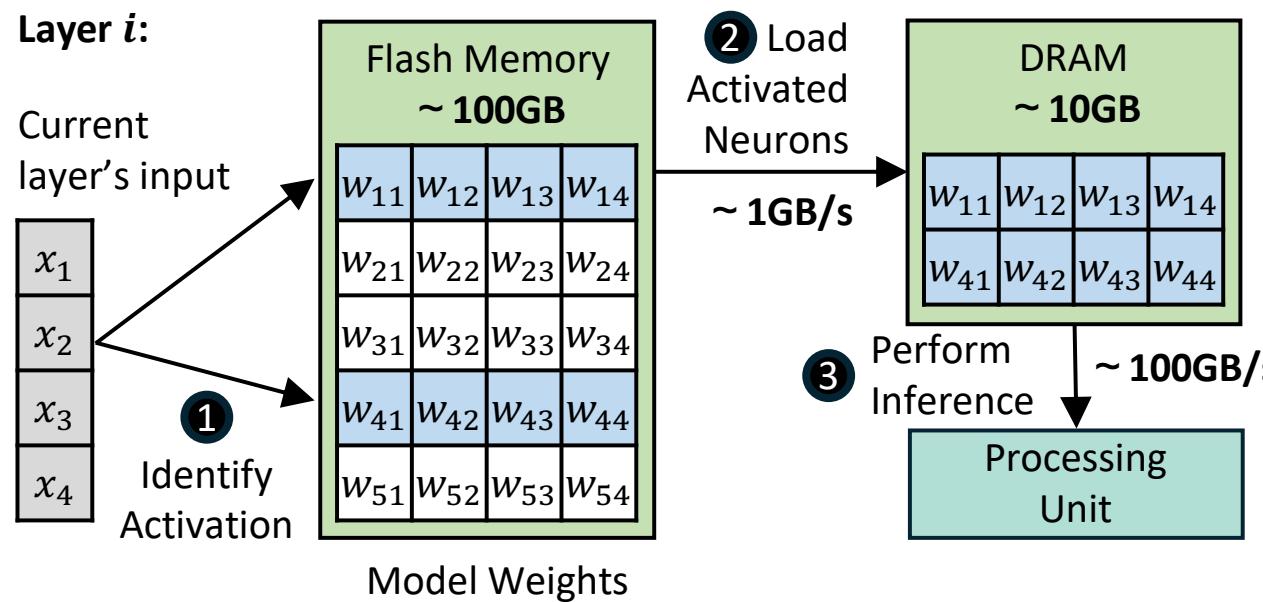
Background: Activation Sparsity in on-Device LLM Inference

- There is a growing demand for deploying LLMs on **mobile devices**, such as smartphones.
- Given the limited DRAM capacity, **activation sparsity** is widely used to support on-device LLM inference.
 - The full model parameters are stored in the much larger flash memory.
 - For a given input, only a subset of relevant model parameters is identified.
 - **The corresponding activated neurons are loaded from flash memory into DRAM.**



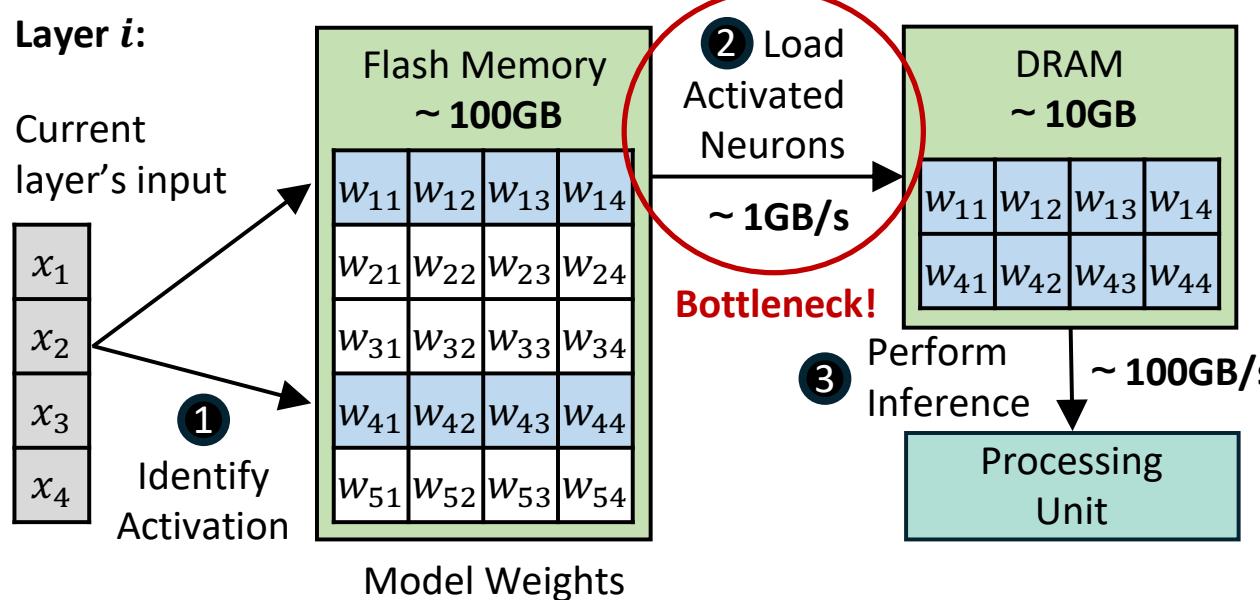
Background: Activation Sparsity in on-Device LLM Inference

- There is a growing demand for deploying LLMs on **mobile devices**, such as smartphones.
- Given the limited DRAM capacity, **activation sparsity** is widely used to support on-device LLM inference.
 - The full model parameters are stored in the much larger flash memory.
 - For a given input, only a subset of relevant model parameters is identified.
 - The corresponding activated neurons are loaded from flash memory into DRAM.
 - **Sparse computation is then performed, producing outputs that are nearly the same as those of dense models.**



Background: Activation Sparsity in on-Device LLM Inference

- There is a growing demand for deploying LLMs on **mobile devices**, such as smartphones.
- Given the limited DRAM capacity, **activation sparsity** is widely used to support on-device LLM inference.
 - The full model parameters are stored in the much larger flash memory.
 - For a given input, only a subset of relevant model parameters is identified.
 - The corresponding activated neurons are loaded from flash memory into DRAM.
 - Sparse computation is then performed, producing outputs that are nearly the same as those of dense models.
- **The I/O overhead between flash memory and DRAM becomes the primary bottleneck.**

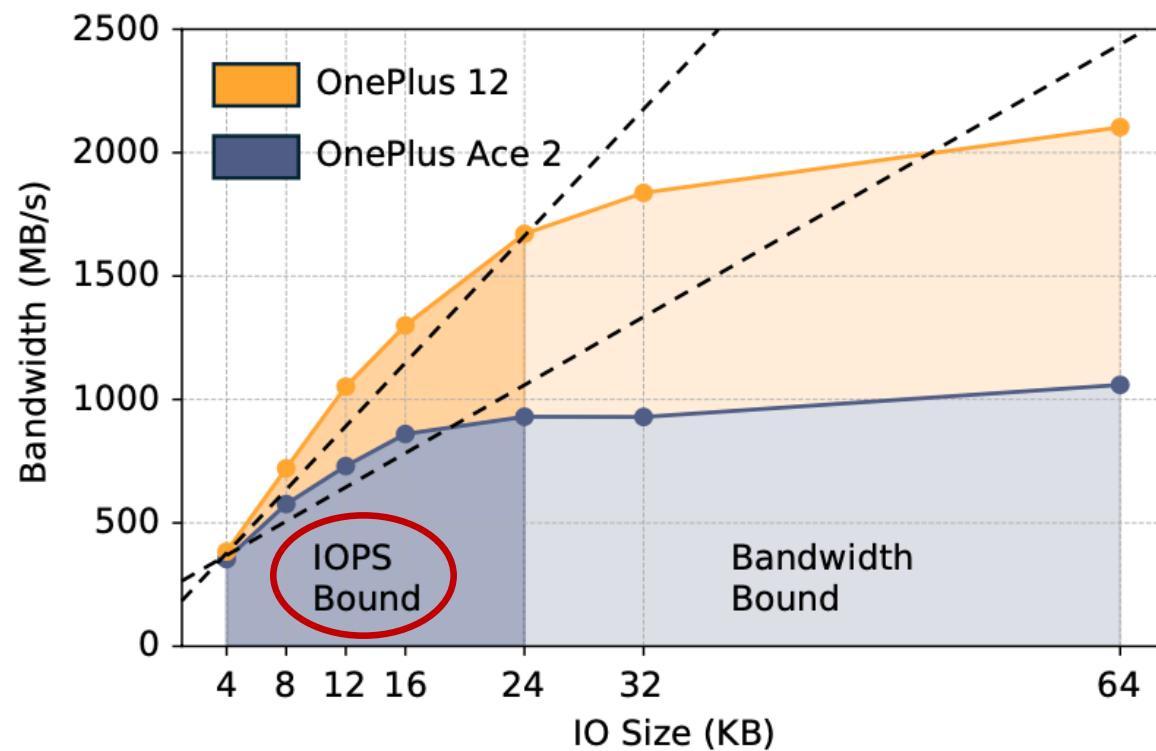


Breakdown of inference latency per token when offloading FFN blocks to flash memory on OnePlus Ace2.

Model	Compute	I/O	Total	I/O Ratio
OPT-350M	82 ms	776 ms	858 ms	90.4%
OPT-1.3B	202 ms	988 ms	1,190 ms	83.0%
OPT-6.7B	804 ms	2,224 ms	3,028 ms	73.4%
Llama-2-7B	609 ms	10,388 ms	10,997 ms	94.5%
Mistral-7B	540 ms	12,220 ms	12,760 ms	95.8%
MobiLlama-1B	230 ms	1,909 ms	2,139 ms	89.2%
Phi-2-2.7B	461 ms	1,976 ms	2,437 ms	81.1%

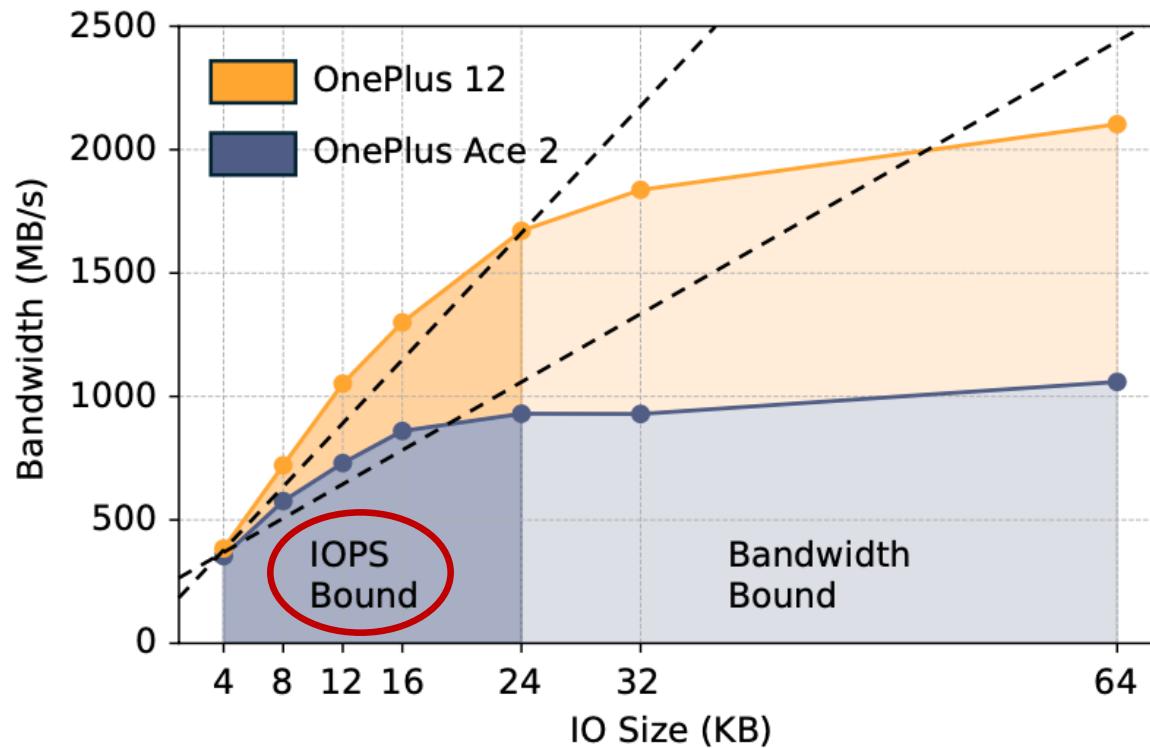
Motivation: IOPS as the Performance Bottleneck

- Mobile devices utilize **Universal Flash Storage (UFS)** as the storage protocol.
- Compared to server-side NVMe, UFS provides a much **shallower command queue** (e.g., 32 entries in UFS 4.0).
- This limitation restricts flash read **I/O Operations Per Second (IOPS)** and prevents full utilization of the bandwidth.



Motivation: IOPS as the Performance Bottleneck

- Mobile devices utilize **Universal Flash Storage (UFS)** as the storage protocol.
- Compared to server-side NVMe, UFS provides a much **shallower command queue** (e.g., 32 entries in UFS 4.0).
- This limitation restricts flash read **I/O Operations Per Second (IOPS)** and prevents full utilization of the bandwidth.
- The scattered activation of parameters induces numerous **small-grained read accesses**, further intensifying the constraint.

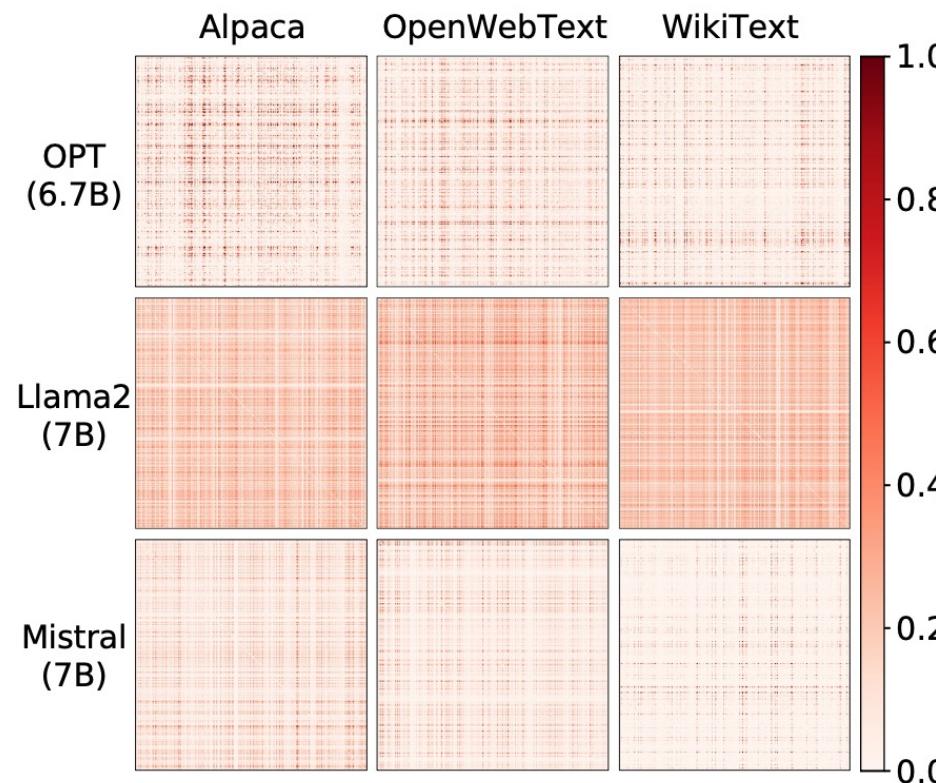


Latency (ms) and bandwidth (MB/s) across different ratios of non-activated neurons in OPT-350M on OnePlus 12.

Ratio	dense	10%	20%	30%	40%
Bandwidth	1637.61	1355.35	1089.24	904.69	746.03
Latency	234.49	254.96	281.96	297.10	308.76
Speedup	-	0.92	0.83	0.79	0.76
Ratio	50%	60%	70%	80%	90%
Bandwidth	598.82	524.50	441.33	396.43	368.05
Latency	320.63	292.78	260.86	193.68	104.18
Speedup	0.73	0.80	0.90	1.21	2.25

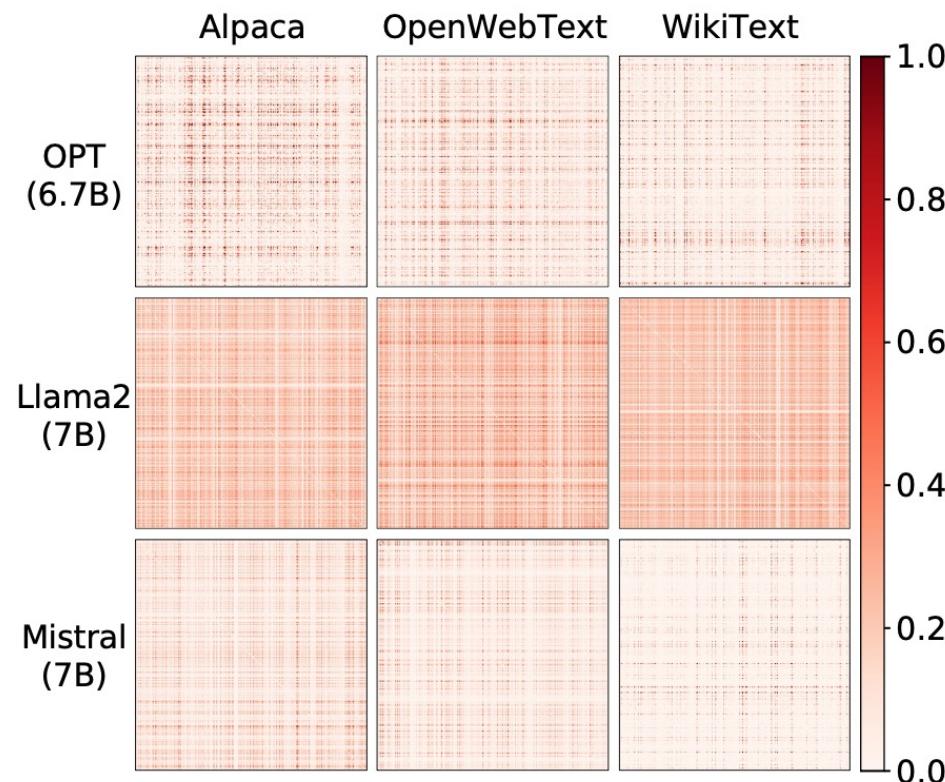
Observation: Neuron Co-Activation Phenomenon

- Conventional **model-structure-based placement** scatters activated parameters across flash memory.
- **Neuron Co-Activation:**
 - Some neurons tend to be activated together with a relatively fixed set of other neurons.
 - Prevalent across different model structures and datasets.
- **Insight: Co-locating frequently co-activated neurons in flash memory** to enable more continuous reads.



Observation: Neuron Co-Activation Phenomenon

- Conventional **model-structure-based placement** scatters activated parameters across flash memory.
- **Neuron Co-Activation:**
 - Some neurons tend to be activated together with a relatively fixed set of other neurons.
 - Prevalent across different model structures and datasets.
- **Insight: Co-locating frequently co-activated neurons in flash memory** to enable more continuous reads.

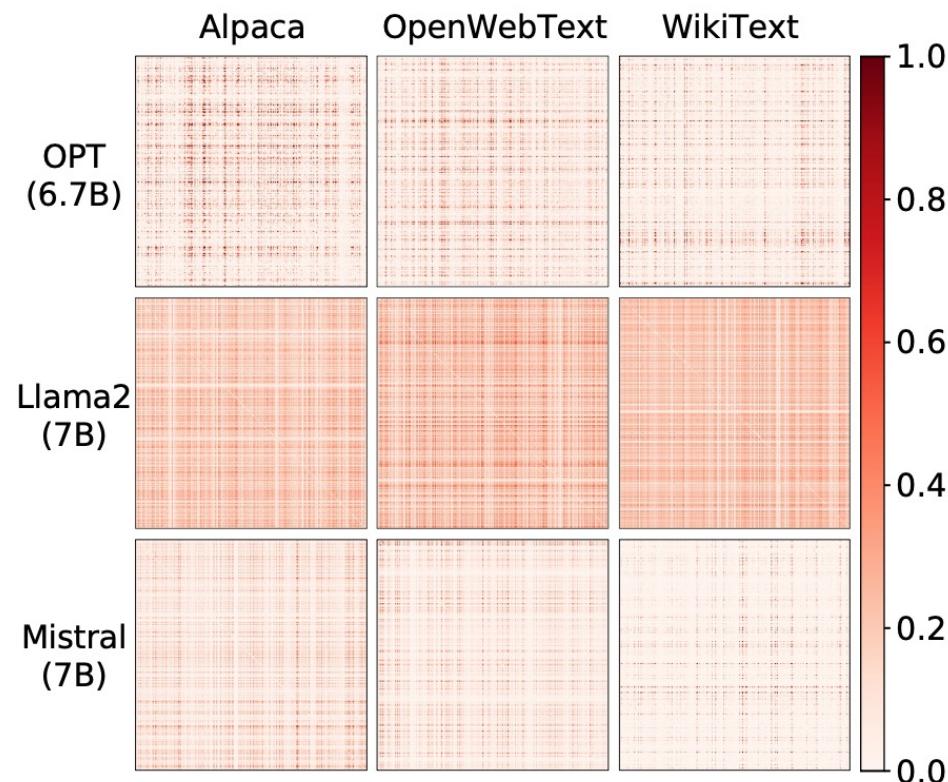


Challenge 1: Extensive Search Space

The immense number of neurons in LLM results in an exponentially large space of possible placement combinations.

Observation: Neuron Co-Activation Phenomenon

- Conventional **model-structure-based placement** scatters activated parameters across flash memory.
- **Neuron Co-Activation:**
 - Some neurons tend to be activated together with a relatively fixed set of other neurons.
 - Prevalent across different model structures and datasets.
- **Insight: Co-locating frequently co-activated neurons in flash memory** to enable more continuous reads.



Challenge 1: Extensive Search Space

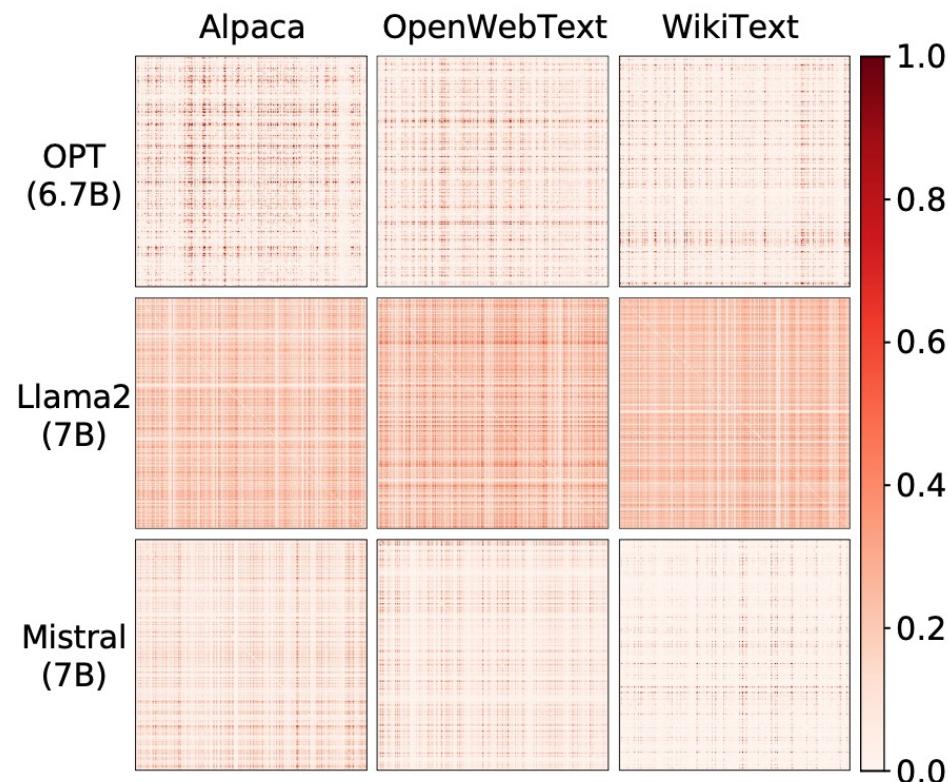
The immense number of neurons in LLM results in an exponentially large space of possible placement combinations.

Challenge 2: Inherent Activation Dynamics

The activation patterns of parameters inherently exhibit dynamics across varying inputs, causing unexpected discontinuities.

Observation: Neuron Co-Activation Phenomenon

- Conventional **model-structure-based placement** scatters activated parameters across flash memory.
- **Neuron Co-Activation:**
 - Some neurons tend to be activated together with a relatively fixed set of other neurons.
 - Prevalent across different model structures and datasets.
- **Insight: Co-locating frequently co-activated neurons in flash memory** to enable more continuous reads.



Challenge 1: Extensive Search Space

The immense number of neurons in LLM results in an exponentially large space of possible placement combinations.

Challenge 2: Inherent Activation Dynamics

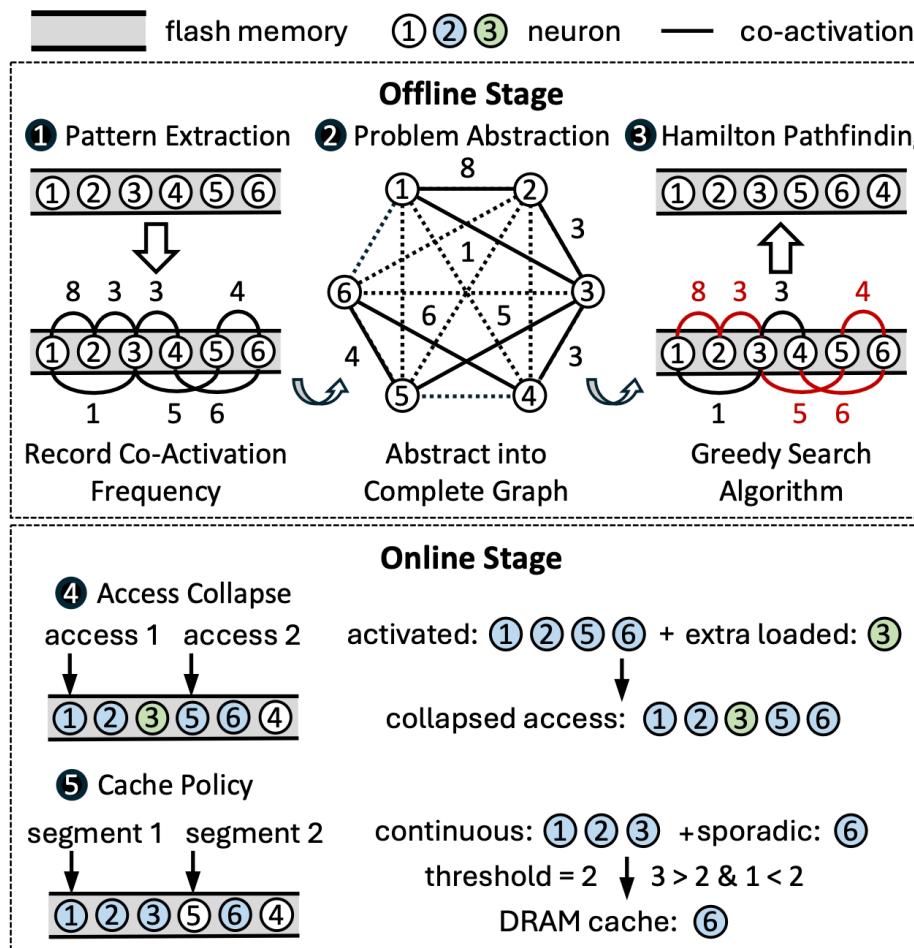
The activation patterns of parameters inherently exhibit dynamics across varying inputs, causing unexpected discontinuities.

Challenge 3: Misaligned Cache Strategy

Existing cache strategies treat neurons individually, leading to fragmentation in their placement in flash memory.

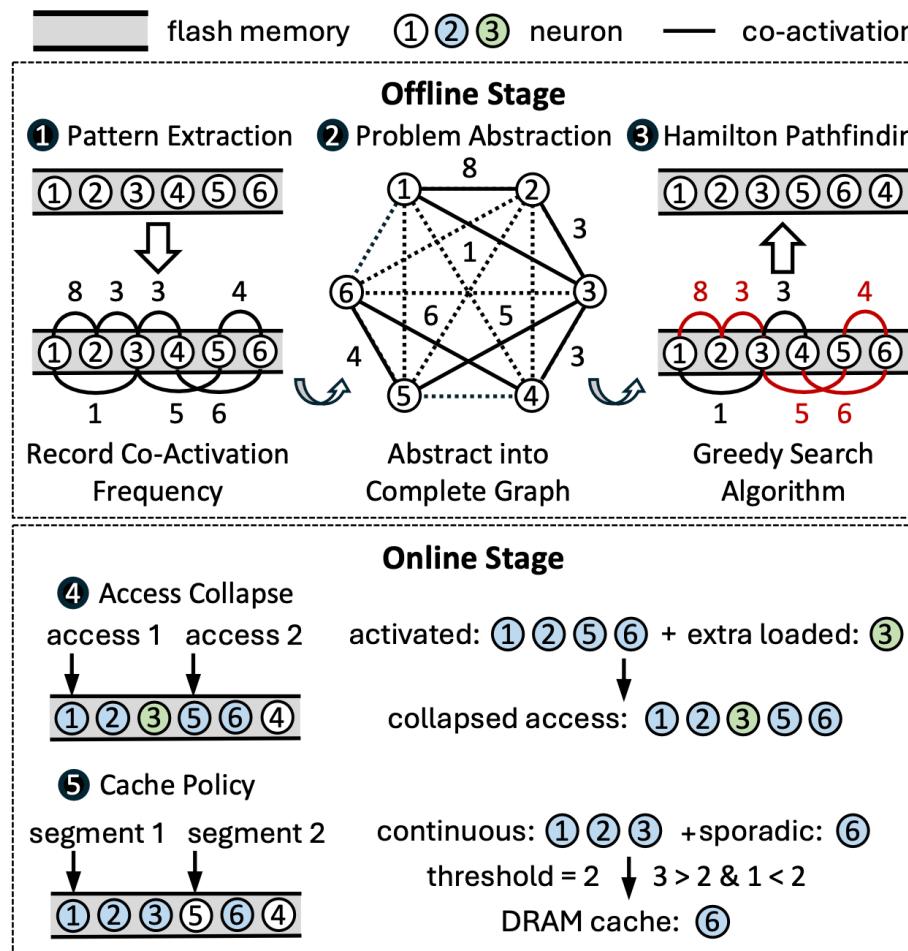
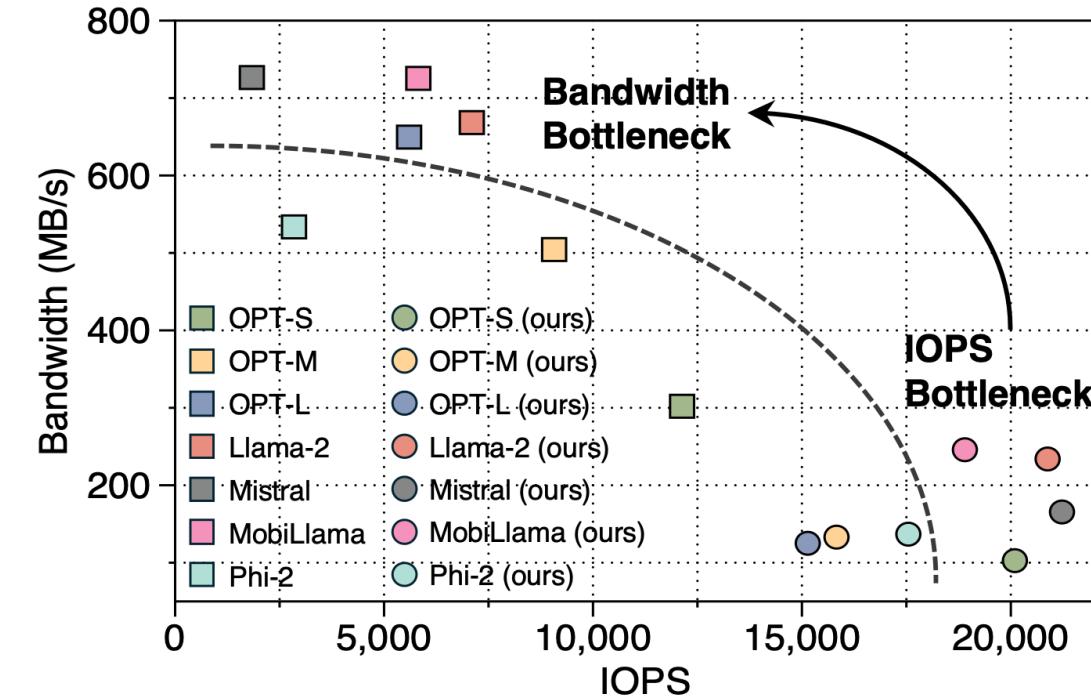
Design: Neuralink Overview

- We propose **Neuralink**, an approach to accelerating LLM inference on smartphones through optimized I/O access.
- **Offline Correlation-Aware Clustering**: Identifies an optimized neuron placement in flash memory.
- **Online Continuity-Centric Processing**: Employs customized data access and DRAM management at runtime.



Design: Neuralink Overview

- We propose **Neuralink**, an approach to accelerating LLM inference on smartphones through optimized I/O access.
- **Offline Correlation-Aware Clustering**: Identifies an optimized neuron placement in flash memory.
- **Online Continuity-Centric Processing**: Employs customized data access and DRAM management at runtime.

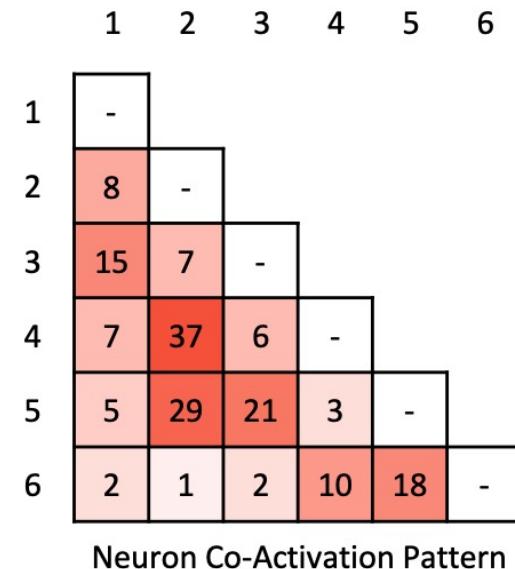


Neuralink shifts the I/O bottleneck from IOPS to Bandwidth!

Offline Design: Correlation-Aware Clustering

- Step 1: Extract neuron co-activation patterns from profiling results.

Co-activation probability of neuron n_i and neuron n_j : $P(ij) = \frac{f(n_i, n_j)}{\sum_{k=1}^N \sum_{l=1}^N f(n_k, n_l)}$



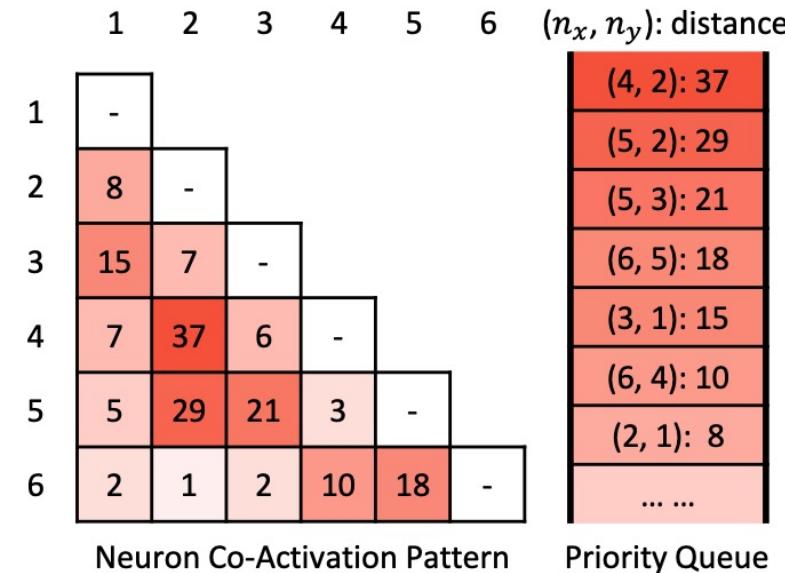
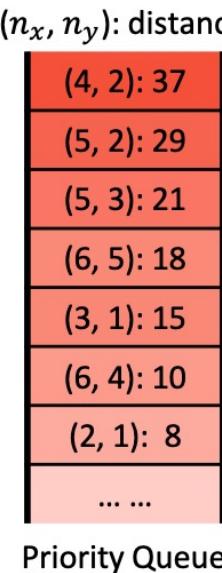
Offline Design: Correlation-Aware Clustering

- **Step 1: Extract neuron co-activation patterns from profiling results.**

Co-activation probability of neuron n_i and neuron n_j : $P(ij) = \frac{f(n_i, n_j)}{\sum_{k=1}^N \sum_{l=1}^N f(n_k, n_l)}$

- **Step 2: Model neuron placement in flash memory using a graph-based representation.**

Distance between two neurons: $\text{dist}(n_i, n_j) := 1 - P(ij)$



Offline Design: Correlation-Aware Clustering

- Step 1: Extract neuron co-activation patterns from profiling results.

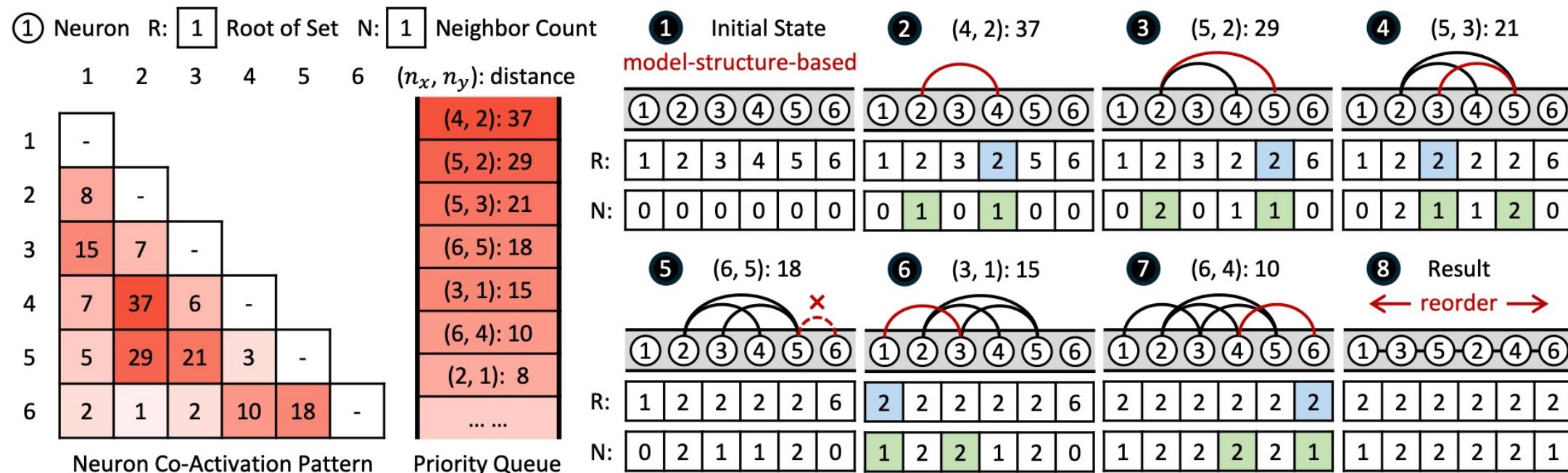
Co-activation probability of neuron n_i and neuron n_j : $P(ij) = \frac{f(n_i, n_j)}{\sum_{k=1}^N \sum_{l=1}^N f(n_k, n_l)}$

- Step 2: Model neuron placement in flash memory using a graph-based representation.

Distance between two neurons: $\text{dist}(n_i, n_j) := 1 - P(ij)$

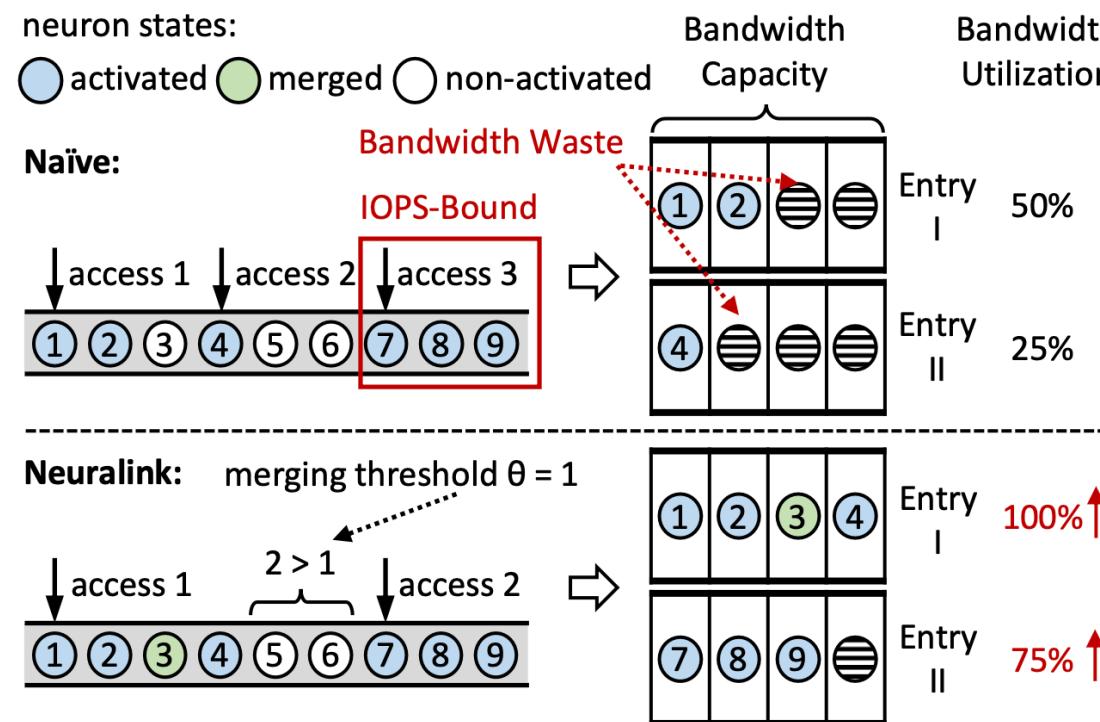
- Step 3: Design a polynomial-time heuristic algorithm to search for an optimized neuron placement.

Distance between two neurons links: $\text{dist}(l_i, l_j) := \min\{\text{dist}(l_i(h), l_j(h)), \text{dist}(l_i(h), l_j(t)), \text{dist}(l_i(t), l_j(h)), \text{dist}(l_i(t), l_j(t))\}$



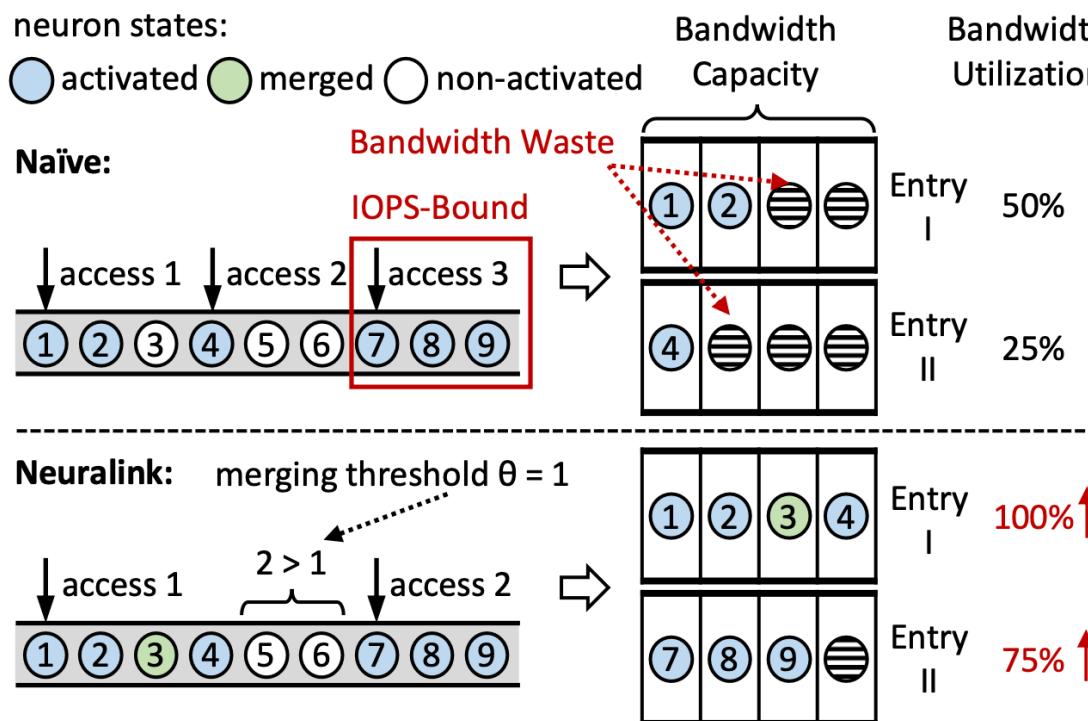
Online Design: Continuity-Centric Processing

- **IOPS-Friendly Access Collapse:** Strategically merges nearby read accesses to reduce I/O operations.
 - If the number of neurons between two neuron links falls below a threshold, access collapse is applied.
 - When bandwidth is fully utilized, the system reverts to the original access strategy.



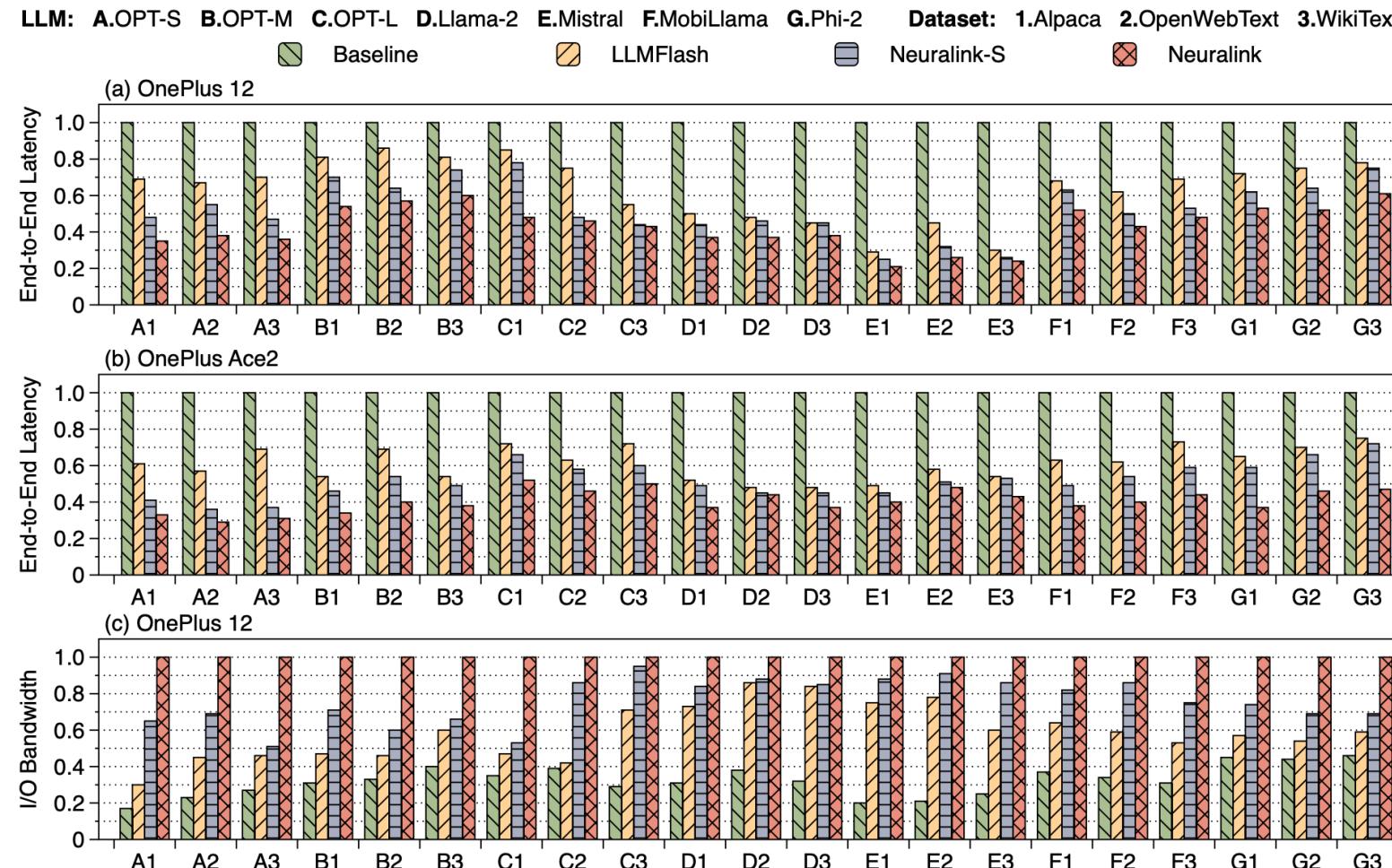
Online Design: Continuity-Centric Processing

- **IOPS-Friendly Access Collapse:** Strategically merges nearby read accesses to reduce I/O operations.
 - If the number of neurons between two neuron links falls below a threshold, access collapse is applied.
 - When bandwidth is fully utilized, the system reverts to the original access strategy.
- **Linking-Aligned Cache Policy:** Caches neurons in DRAM at the granularity of neuron segments.
 - Prioritizes caching outlier neurons that are co-activated with only a small number of surrounding neurons.
 - Caches continuous segments with lower priority than outlier neurons.



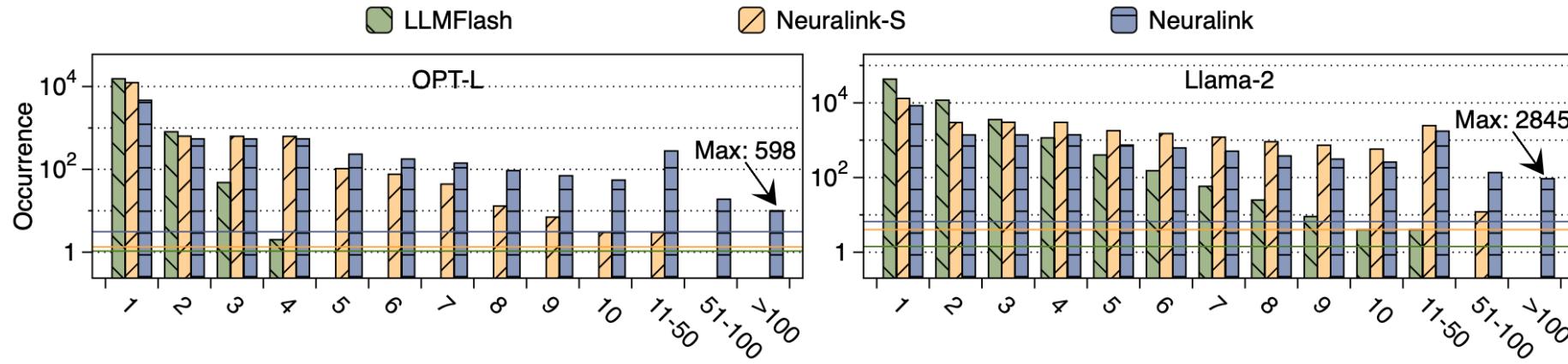
Evaluation – Overall Performance

- 7 Models × 8 Datasets × 3 Hardware × 3 Baselines (llama.cpp, LLMFlash, Neuralink-S)
- **End-to-end Latency:** Achieves average speedups of $2.37\times$, $1.48\times$, and $1.25\times$ over the three baselines.
- **Effective Bandwidth:** Achieves average improvements of $3.28\times$, $1.80\times$, and $1.36\times$ over the three baselines.



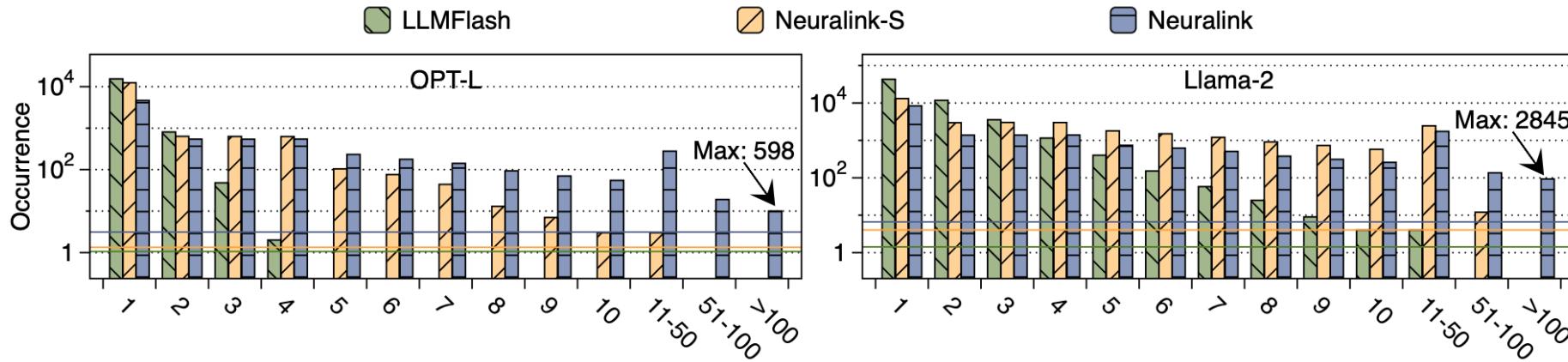
Evaluation – Ablation and Sensitivity Analysis

- Statistical information on read access lengths per token.
 - Neuralink increases the average read access lengths to 3.12 (from 1.06) and 6.62 (from 1.42) across OPT-L and Llama-2.



Evaluation – Ablation and Sensitivity Analysis

- Statistical information on read access lengths per token.
 - Neuralink increases the average read access lengths to 3.12 (from 1.06) and 6.62 (from 1.42) across OPT-L and Llama-2.



- Performance across different combinations of profiling (rows) and testing (columns) datasets.
 - Neuron co-activation patterns are largely intrinsic to the LLM and are minimally affected by input variations.

Model	Profiling Dataset	Testing Dataset		
		Alpaca	OpenWebText	WikiText
Alpaca	Alpaca	711.09 ms	809.80 ms	800.46 ms
	Speedup	1.86×	1.65×	1.59×
OPT-L	OpenWebText	856.48 ms	802.01 ms	800.26 ms
	Speedup	1.54×	1.67×	1.59×
WikiText	Alpaca	823.93 ms	1031.41 ms	784.19 ms
	Speedup	1.60×	1.30×	1.63×

Model	Profiling Dataset	Testing Dataset		
		Alpaca	OpenWebText	WikiText
Alpaca	Alpaca	4405.76 ms	4537.75 ms	3747.40 ms
	Speedup	1.27×	1.17×	1.45×
Llama-2	OpenWebText	3546.12 ms	4118.59 ms	4318.28 ms
	Speedup	1.57×	1.29×	1.26×
WikiText	Alpaca	4769.36 ms	4535.48 ms	4578.87 ms
	Speedup	1.17×	1.17×	1.18×

Related Works and Implementations

- **I/O + Model Weight:**
 - *Neuralink: Fast LLM Inference on Smartphones with Neuron Co-Activation Linking*
- **I/O + KV Cache:**
 - *DynaKV: Enabling Accurate and Efficient Long-Sequence LLM Decoding on Smartphones*
- **Compute + Test-Time Scaling:**
 - *Scaling LLM Test-Time Compute with Mobile NPU on Smartphones*
- **On-Device NPU Operator Library:**
 - [*https://github.com/omnimind-ai/OmniOp-NPU*](https://github.com/omnimind-ai/OmniOp-NPU)
- **On-Device LLM Inference Framework:**
 - [*https://github.com/omnimind-ai/OmniInfer-LLM*](https://github.com/omnimind-ai/OmniInfer-LLM)
- **On-Device VLM Inference Framework:**
 - [*https://github.com/omnimind-ai/OmniInfer-VLM*](https://github.com/omnimind-ai/OmniInfer-VLM)

Thank you.

wtw23@mails.tsinghua.edu.cn

