
In natural language processing, the adaptation of pre-trained 

large language models (LLMs) to diverse downstream tasks 

constitutes a fundamental aspect of many applications. This 

adaptation process, commonly known as fine-tuning, involves 

the comprehensive update of all parameters within the pre-

trained model akin to training from scratch.

The major reason hindering the fine-tuning efficiency is the 

retention of the same number of parameters in the new model as 

in the original one. Efforts have been made to address this 

concern by introducing parameter-efficient fine-tuning (PEFT) 

techniques, which only selects or injects a minimal number of 

parameters for adaption to new tasks. One prominent approach 

in the domain of PEFT is low-rank adaption (LoRA). It freezes 

pre-trained model weights and injects smaller, trainable low-

rank matrices into each transformer block.

This substantial reduction in the number of trainable parameters 

mitigates the need for maintaining and updating the optimizer 

states for most parameters. However, PEFT techniques fall short 

of achieving an expected decrease in wall-clock time. Even with 

minimal parameters being trainable, techniques like LoRA only 

experience an 18% reduction in wall-clock time. While PEFT 

techniques notably cut down the optimization step's wall-clock 

time, they leave the duration of the forward and backward 

passes either unchanged or slightly increased. This is because, 

despite most pre-trained parameters being frozen, computing 

gradients for trainable parameters still requires complete 

forward and backward passes through the backbone model. 

Consequently, the forward and backward passes have emerged 

as the computational bottlenecks impeding further acceleration.

In this paper, we propose Long Exposure, an efficient system to 

accelerate parameter-efficient fine-tuning for LLMs. The design 

of Long Exposure is grounded in a crucial observation that 

PEFT and inference in LLMs exhibit high similarities in their 

computation patterns. In PEFT techniques, a majority of model 

parameters remain frozen, similar to the scenario in model 

inference where parameters also stay unaltered. Previous studies 

have evidenced that LLMs typically exhibit considerable 

sparsity, with a great number of activations can be excluded 

from computation to expedite inference in wall-clock time while 

preserving quality. Guided by this observation, the key insight 

of Long Exposure is inspired: given the striking similarities in 

computation patterns between PEFT and inference, why not 

build a bridge to PEFT acceleration by capturing intrinsic 

sparsity like inference?

However, this is not a low-hanging fruit, as the sparsity inherent 

in fine-tuning introduces distinct characteristics that diverge 

significantly from those encountered during inference. In 

inference, the model typically processes one token at a time, 

where the sparse pattern is easily discernible for each token. In 

contrast, fine-tuning involves feeding the model with a sequence 

of tokens, where the sparsity patterns heavily overlap across 

different tokens. We coin this intricate sparsity observed in fine-

tuning as Shadowy Sparsity.

To accelerate PEFT for LLMs under this shadowy sparsity, 

several key technical challenges must be tackled carefully.

① How to capture more sparse patterns under shadowy 

sparsity, avoiding potential computational waste? 

② How to predict efficient yet accurate sparse patterns to 

minimize associated computational expenses before 

incurring actual costs?

③ How to achieve effective performance improvements based 

on well-predicted sparsity?
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Execution Time. Integrating Long Exposure into three 

exemplary PEFT techniques, we examine two different 

parameter sizes and sequence lengths for each one. The results 

indicate that our system achieves up to 1.25× and 2.49 ×
speedup on average for OPT-1.3B with a sequence length of 512 

and 1024 on A100, respectively. With a larger 2.7B model, the 

speedup remains consistent, averaging 1.44× and 2.49×, 

respectively. Parallel results are observed on A6000, 

underscoring the robustness and reliability of our system.

Memory Footprint. Despite not being explicitly designed for 

memory efficiency, the application of head-specific sparse 

attention masks alters the memory complexity from quadratic to 

linear, leading to lower memory footprints. Furthermore, 

selective activating model weights in MLP block permits the 

majority of the model to reside on the CPU, with only the active 

weights being transferred to the GPU for processing. This 

strategy can lead to additional memory savings.

Model Accuracy. We investigate the impact of Long Exposure 

on model accuracy by comparing with original LoRA across a 

variety of downstream tasks. We fine-tune OPT models of three 

distinct sizes on the Alpaca dataset. The results show that Long 

Exposure incurs only a minimal loss in downstream task 

accuracy across all model sizes and task types. This is because 

the essence of sparsity lies in disregarding the computation of 

elements that are zero or nearly zero, thereby only marginally 

affecting the final results.

The concept of Long Exposure emphasizes that rather than 

simply harnessing the limited sparsity remaining in shadowy 

sparsity, we take a longer view which captures more intricate 

details of individual sparse pattern before they fade into shadow.

The core of Long Exposure is the Shadowy-sparsity Exposer, 

designed for exposing the latent sparsity hidden in shadowy 

sparsity. In MHA block, we introduce specific sparse patterns 

tailored to each attention head, avoiding the computational 

redundancy or oversight that can arise from employing a 

uniform mask. In MLP block, we take the importance of each 

activated neuron into consideration. By identifying and filtering 

out neurons whose activation can be safely disregarded, we 

transform shadowy sparsity into structured block-wise sparsity.

Long Exposure utilizes Sequence-oriented Predictors to 

address the conflicts between long sequence inputs and the 

associated neural network size. This technique is grounded in a 

two-stage design strategy: Initially, the predictor processes each 

token individually; then these predictions are subsequently 

consolidated. Moreover, to minimize the disruption caused by 

updating trainable parameters, we introduce specific training 

optimizations to bolster the predictor's robustness.

Long Exposure develops a collection of Dynamic-aware 

Operators to facilitate practical acceleration on hardware 

systems, covering all the sparse operations involved in MHA 

and MLP block. Different from most existing tools, these 

operators avoid additional data conversion overhead, making 

them well-suited for dynamic scenarios. In addition, we design a 

two-stage algorithm for multi-head attention that adeptly 

balances precomputation with dynamic sparse patterns.
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