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Introduction

In natural language processing, the adaptation of pre-trained
large language models (LLMs) to diverse downstream tasks
constitutes a fundamental aspect of many applications. This
adaptation process, commonly known as fine-tuning, involves
the comprehensive update of all parameters within the pre-
trained model akin to training from scratch.

The major reason hindering the fine-tuning efficiency is the
retention of the same number of parameters in the new model as
in the original one. Efforts have been made to address this
concern by introducing parameter-efficient fine-tuning (PEFT)
techniques, which only selects or injects a minimal number of
parameters for adaption to new tasks. One prominent approach
in the domain of PEFT is low-rank adaption (LoRA). It freezes
pre-trained model weights and injects smaller, trainable low-
rank matrices into each transformer block.

This substantial reduction in the number of trainable parameters
mitigates the need for maintaining and updating the optimizer
states for most parameters. However, PEFT techniques fall short
of achieving an expected decrease in wall-clock time. Even with
minimal parameters being trainable, techniques like LoRA only
experience an 18% reduction in wall-clock time. While PEFT
techniques notably cut down the optimization step's wall-clock
time, they leave the duration of the forward and backward
passes either unchanged or slightly increased. This is because,
despite most pre-trained parameters being frozen, computing
gradients for trainable parameters still requires complete
forward and backward passes through the backbone model.
Consequently, the forward and backward passes have emerged
as the computational bottlenecks impeding further acceleration.
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Phase Forward Backward Optim. Step  Total

Full Param. 112.8(27.7%) 223.7(54.9%) 70.6(17.3%) 407.2
LoRA [6] 135.3(40.4%) 196.3(58.7%) 2.0(0.6%) 334.6
Adapter [7] 123.6(42.2%) 168.4(57.5%) 0.7(0.3%) 292.9
Bitfit [8] 117.6(40.5%) 172.4(59.4%) 0.2(0.07%) 290.3
P-Tuning [9] 137.5(40.1%) 193.9(56.6%) 11.1(3.2%) 342.6

In this paper, we propose Long Exposure, an efficient system to
accelerate parameter-efficient fine-tuning for LLMs. The design
of Long Exposure is grounded in a crucial observation that
PEFT and inference in LLMs exhibit high similarities in their
computation patterns. In PEFT techniques, a majority of model
parameters remain frozen, similar to the scenario in model
inference where parameters also stay unaltered. Previous studies
have evidenced that LLMs typically exhibit considerable
sparsity, with a great number of activations can be excluded
from computation to expedite inference in wall-clock time while
preserving quality. Guided by this observation, the key insight
of Long Exposure is inspired: given the striking similarities in
computation patterns between PEFT and inference, why not
build a bridge to PEFT acceleration by capturing intrinsic
sparsity like inference?
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However, this is not a low-hanging fruit, as the sparsity inherent
in fine-tuning introduces distinct characteristics that diverge
significantly from those encountered during inference. In
inference, the model typically processes one token at a time,
where the sparse pattern is easily discernible for each token. In
contrast, fine-tuning involves feeding the model with a sequence
of tokens, where the sparsity patterns heavily overlap across
different tokens. We coin this intricate sparsity observed in fine-
tuning as Shadowy Sparsity.

To accelerate PEFT for LLMs under this shadowy sparsity,
several key technical challenges must be tackled carefully.

(@) How to capture more sparse patterns under shadowy
sparsity, avoiding potential computational waste?

@ How to predict efficient yet accurate sparse patterns to
minimize associated computational expenses before
incurring actual costs?

3 How to achieve effective performance improvements based
on well-predicted sparsity?
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Design

The concept of Long Exposure emphasizes that rather than
simply harnessing the limited sparsity remaining in shadowy
sparsity, we take a longer view which captures more intricate
details of individual sparse pattern before they fade into shadow.
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The core of Long Exposure is the Shadowy-sparsity Exposer,
designed for exposing the latent sparsity hidden in shadowy
sparsity. In MHA block, we introduce specific sparse patterns
tailored to each attention head, avoiding the computational
redundancy or oversight that can arise from employing a
uniform mask. In MLP block, we take the importance of each
activated neuron into consideration. By identifying and filtering
out neurons whose activation can be safely disregarded, we
transform shadowy sparsity into structured block-wise sparsity.

Long Exposure utilizes Sequence-oriented Predictors to
address the conflicts between long sequence inputs and the
associated neural network size. This technique is grounded in a
two-stage design strategy: Initially, the predictor processes each
token individually; then these predictions are subsequently
consolidated. Moreover, to minimize the disruption caused by
updating trainable parameters, we introduce specific training
optimizations to bolster the predictor's robustness.

Long Exposure develops a collection of Dynamic-aware
Operators to facilitate practical acceleration on hardware
systems, covering all the sparse operations involved in MHA
and MLP block. Different from most existing tools, these
operators avoid additional data conversion overhead, making
them well-suited for dynamic scenarios. In addition, we design a
two-stage algorithm for multi-head attention that adeptly
balances precomputation with dynamic sparse patterns.

Evaluation

Execution Time. Integrating Long Exposure into three
exemplary PEFT techniques, we examine two different
parameter sizes and sequence lengths for each one. The results
indicate that our system achieves up to 1.25 X and 2.49 X
speedup on average for OPT-1.3B with a sequence length of 512
and 1024 on A100, respectively. With a larger 2.7B model, the
speedup remains consistent, averaging 1.44 X and 2.49 X,
respectively. Parallel results are observed on A6000,
underscoring the robustness and reliability of our system.
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Memory Footprint. Despite not being explicitly designed for
memory efficiency, the application of head-specific sparse
attention masks alters the memory complexity from quadratic to
linear, leading to lower memory footprints. Furthermore,
selective activating model weights in MLP block permits the
majority of the model to reside on the CPU, with only the active
weights being transferred to the GPU for processing. This
strategy can lead to additional memory savings.
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Model Accuracy. We investigate the impact of Long Exposure
on model accuracy by comparing with original LoRA across a
variety of downstream tasks. We fine-tune OPT models of three
distinct sizes on the Alpaca dataset. The results show that Long
Exposure incurs only a minimal loss in downstream task
accuracy across all model sizes and task types. This is because
the essence of sparsity lies in disregarding the computation of
elements that are zero or nearly zero, thereby only marginally
affecting the final results.

350M-w/o 350M-w 1.3B-w/o 1.3B-w 2.7B-w/o 2.7B-w

Acc. 65.13% 64.80% 72.25% 72.09% 74.710% 73.45%
Stderr 1.11% 1.12% 1.05% 1.06% 1.02% 1.02%
Winog Acc. 53.04% 53.12% 58.88% 58.80% 62.27% 62.19%
" Stderr 140% 140% 138% 138% 137% 1.36%

Acc. 54.51% 55.60% 54.15% 54.51% 52.71% 53.79%

PIQA

RTE  Stderr  2.99% 3.01% 3.01% 301% 3.00% 2.04%
copa Acc.  69.00% 70.00% 81.00% 81.00% 78.00% 76.00%

Stderr  4.61% 451% 423% 4.02% 429% 4.09%
Lo Acc.  32.26% 3240% 42.08% 42.11% 46.76% 43.95%

Stderr 047% 047% 0.499% 049%  0.50% 0.50%
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