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※ 研究背景

※ 核心观察

※ 实验结果
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端侧大模型因其实时性、经济性、和安全性等方面的优势，正受到越来越多的关注。由于端侧设备（如：手机）的 DRAM 内存

空间通常相对受限，端侧大模型部署通常采用“激活稀疏+异构存储”的方式，即将模型参数存放在 Flash 存储上，推理时动态

加载部分参数到 DRAM 内存，利用模型稀疏性完成相应计算。这一方法缓解了内存压力，但是 I/O 通信成为了新的瓶颈。

观察 1：端侧设备通常使用 UFS 作为存储介质，其 I/O 瓶颈主要来源于 I/O Operations Per Second (IOPS) 受限而非带宽受限。

观察 2：激活稀疏天然会引入大量不连续的访存模式，这使得 IOPS 受限的问题在端侧场景下尤为突出。

观察 3：激活稀疏下的模型神经元呈现出显著的共同激活现象，即某些神经元往往会与一组相对固定的其他神经元同时被激活。
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LLM: A.OPT-S B.OPT-M C.OPT-L D.Llama-2 E.Mistral F.MobiLlama G.Phi-2 Dataset: 1.Alpaca 2.OpenWebText 3.WikiText
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实验结果：

(1) 3 个硬件设备，7 个大模型，8 个数据集

(2) 端到端延迟：较 llama.cpp 2.37×提升

(3) 带宽利用率：较 llama.cpp 3.28×提升

核心贡献：缓解端侧 IOPS 受限，逼近带宽上限。
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※ 关键方法
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离线：神经元存储排布算法，将共同激活频次视为距离，启发式地寻找最短哈密顿路径。

核心思想：修改存储上参数排布，将频繁被共同激活的参数排布在一起，从而提升访存连续性，减少 I/O 时延。

方法 - 离线阶段：将神经元抽象为图节点，统计神经元共同激活频率作为节点间距离，利用最短哈密顿路径算法寻找最优排布。

方法 - 在线阶段：灵活合并相近神经元链，进一步增加访存连续性；针对性设计缓存管理策略，优先缓存非连续神经元。

在线：选择性连续读取相近神经元链。

不同读取长度下的 UFS有效带宽

不同稀疏比下模型推理的时延和带宽，受有效带

宽下降影响，稀疏比需要达到 80%才有加速比
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